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Abstract

Molecules derived from a parent skeleton are enumerated where both achiral ligands as
well as chiral ligands are allowed. Chirality fittingness of an orbit is proposed in order to
permit chiral ligands. The enumeration is conducted with and without consideration of
obligatory minimum valency (OMV). The effect of the OMYV is formulated by assigning
different weights 1o the respective orbits of the parent skeleton. The importance of coset
representations and their subduction by subgroups is discussed. The subduced representa-
tions are classified into three classes through their chirality fittingness, which determines
the mode of substitution with chiral and achiral ligands. Several novel concepts such as a
unit subduced cycle index and a subduced cycle index are given in general forms.

1. Introduction

Enumerations of chemical structures have long been studied by using Pélya's
theorem, which dates back to the 1930s {1]. In the early 1970s, Ruch [2] pointed out that
double cosets are useful in enumeration problems. More recently, Hésselbarth [3]
reported an excellent method that utilizes a table of marks. Brocas [4] dealt with such
problems by using another formulation which is related to double cosets and framework
groups [5]. Mead [6] discussed the relationship between these methods, and pointed out
the merits of Hésselbarth's approach.

In a previous paper [7], we discussed subduction of coset representations (SCR)
and presented the SCR notation for a systematic classification of molecular symmetry.
In addition, we pointed out that several related concepts, e.g. unit subduced cycle
indices (USCIs) and the USCIs with chirality fittingness (USCI-CFs), are useful for
qualitative discussions on molecular symmetry. In continuation of the work, this paper
clarifies their meanings (especially that of chirality fittingness) and deals with a quan-
titative application of the USCI(-CF)s to enumeration problems.
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122 S. Fujita, Subduction of coset representations

2. Orbits specified by coset representations and obligatory minimum valencies

If a skeleton of a given symmetry is considered to be a chemical objective, the
positions of the skeleton are classified into several sets (orbits) of equivalent positions.
For example, noradamantane (1) has four orbits when we consider the carbon skeleton
only. Similarly, both adamantane (2) and iceane (3) have two orbits. For the purpose of
enumerating chemical structures, it is necessary to clarify the symmetrical behavior of
such orbits.

This task is accomplished by considering a coset representation (appendix A).
We use the symbol G(/G)) to denote a coset representation (CR) of G by a subgroup G,
The following theorem has already been proved in Burnside's excellent book [8].

THEOREM 1

Any permutation representation Fy, of a finite group G acting on A = {6,,8,....6,)

can be reduced into transitive CRs in accord with the following equation:
&
Pc =23 o;G(/G)). (1)
i=1

The multiplicities (¢) are non-negative integers, which are obtained as solutions of the
following equation:

5
ujzzaimij’ J: 172)---7S> (2)

i=1

where p is the mark (the number of fixed points) of Gj in P;. The symbol m denotes
the mark of G, in G(/G).

In chemical applications, the G-set (A) is regarded as a set of positions contained
in a skeleton. Equation (1) divides the set into orbits in the manner that a transitive
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G(/G) acts on each of the o, orbits, A4

5
Yy «a
i=1

, and A,a (i=1,2,.
respectlve length of which is equal to IGI/IGI The total number of such orbits is

123

., $), the

For an illustration of theorem 1, appendix B deals with a trigonal pyramid of C,
symmetry. This calculation requires a table of marks such as that listed in table 1. The

concrete forms of coset representations for the C, group are found in table 2.

Table 1
Mark table of C3v

C, G Cy Gy,
C,uc) 6 0 0 0
C,c) 3 1 0 0
C,uc,) 2 0 2 0
C, U, 1 1 1 1
Table 2
Coset representations of C,
Gy, G ey GUC) G UC) GG
I M3 E G 6 H@ G M@ 0]
(0N 123)@56) (123) (@ 1)
C32 132)(@d65) 132 MH® ¢))
(1) (14 @26)35) (123 (12 €]
() (152436 (12)(3) (12) ¢y
) (16)(25) (3 4) 13)@ (12) M

In the present enumeration of chemical structures, a molecule is considered to
be a derivative of a given skeleton with appropriate ligands (or atoms) on its positions
(vertices). From this point of view, it is necessary to consider an obligatory minimum
valency (OMYV) inherent in each position of the skeleton. The OMY is the degree of the
position in a graph-theoretical sense [9,10]. For example, in the noradamantane skeleton
(1), two orbits (methylene bridges marked by heavy dots and by a small triangle) have
an OMYV = 2, which indicates the capability of taking C, N, and O from a set of C, N,
and O atoms. The bridgehead positions of 1 construct two orbits, which have an

OMYV = 3. This means that these positions take C and N but no O.
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Thus, the OMYV restricts the mode of substitution at a position, in which the
position is incapable of taking an atom or a ligand that has a valency less than its OMV.
Hence, we should take the OMYV into account in enumerations of molecules. Since
positions of an orbit have the same OMYV, the effect of the OMV can be formulated by
assigning a different (or, more strictly, an independent) weight to every orbit of a parent
skeleton.

3. Chirality fittingness of an orbit

This section discusses another chemical explanation of coset representations
(CRs) and affords a foundation to the concept of chirality fittingness. The discussion
stems from the relationship between a regular representation (RR) and other CRs.

A regular representation G(/G)) on A= {4, 6, ...,8,}, where G =C, and
IAl =G/, is a faithful representation of G acting on A. Let G be a subgroup of G We
then define a subduced representation of the RR, G(/G)), by G. as a representation in
which elements associated only with G are selected from G(/G)). Let the symbol
G(/G )lG denote the subduced rcpresentauon Since the regular representation G(/G,)
is tran51t1ve the domain (A) contains only one orbit. However, the subduced represen-
tation G(/G, )iG acting on A is generally intransitive and hence can be reduced by the

following set of equatlons
G(/G1)LG;=(G|/1G;1)G;(/H)) for j=1,2,...,s, 3)

where H ) is an identity representation (appendix C). Equation (3) indicates that the
domain A is partitioned into IGI/IG,| sub-orbits, o, ,, » @, on each of which
G(/H{") act. Since r= IGI/IG\, the fength of each orbit is equal to IGJI If we take
Ql ®,, we can construct asystem of imprimitive blocks, I'= {Q , €2, , €2}, where
1 = QT for 37_€ G (appendices D and E).

As an illustration, let us examine a coset representation C, JL/C), which is shown
explicitly in table 2. First, the corresponding regular reprcsentatlon C J/C)) is subduced
with respect to C Thus, the subduced representation C,(/C, )iC {(1) 2) (3) 4) (5) (6),
(14)(26)3 5)} creates a paruuon of the domain A = {1, 2 3, 3 5, 6} into three orbits,
ie. A ={1,4},A = {2,6},A, = {3,5). This can be done by using egs. (1) and (2), but
it is easy to obtam the result dxrectly in the present case. If we select Q =A = (1,4}
and the stabilizer C, the corresponding coset partition is C, = =C +C C +C C2
This equation affords a system of imprimitive blocks, I'= {Q Q Q }, where
Q,=CQ =(2,5} and Q, = C32Q = {3, 6} (appendix E). The representation C,(/C)
can be considered to act on I'. If we select orbits other than Q,, other systems of
imprimitive blocks are obtained. These results are illustrated in fig. 1, in which benzene
is regarded as cyclohexa-1,3,5-triene with two different faces (i.e. so-called polarized
cyclohexa-1,3,5-triene) which has C, symmetry. The relationship between G and G
that appears in a CR (G/(G ) controls the mode of substitution on the correspondmg
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Fig. 1. Action of coset representations on blocks in a C, (/C)) set.

orbit. this mode is clarified by examining the action of G(/G)onT'= {Q, Q,, ..., Q).
Thus, the discussions shown in appendix F afford the following theorem concerned with

chirality fittingness.

THEOREM 2

A coset representation G(/Gj) can act on:

a domain that takes only achiral ligands, if both G ard G/. < G contain improper
rotations (an achiral part);
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(b) adomain that takes achiral as well as chiral ligands, if both G and G < G contain
only proper rotations (a neutral part); and

(c) a domain that takes achiral as well as chiral ligands, if G contains improper
rotations and G,. contains only proper rotations (a chiral part).

4. Subduced representations of a coset representation

Let us consider a subduced representation (SR), G(/G. )iGJ where G, < G and
G <G. This SR is a permutation representation of G and acts on each orbit A,
(a- 1,2,. , o) in an intransitive fashion. Hence, the orblt (A )1s subdivided into the
correspondmg sub orbits on the action of G(/G, )iG on A, in the same manner as
discussed for theorem 1 (eqs. (1) and (2)). Thus we end up w1th

COROLLARY 1-1
Wi .. i
G(/GHLG; =Y B2G6,(/HD) for i=1,2,...,s and j=1,2,...,5, (4)
k=1

where H{ denotes a subgroup of a conjugacy class of G; G(/HY) is the CR of G, by
H(’) @(‘1) are non-negative integers; and v, is the number of conjugacy classes of
subgroups The multiplicities ﬁ(‘/) are calculated by the equation

Uy
vi=3 Bm, I=1,2,...,0, (5)
k=1

where v, is the mark of H in G(/Gl.)lG’..

Figure 2 shows a division and subdivision during the actions of G and
G(/G‘.)lGj. The division of A by G affords orbits A, G=1, 2,...,sanda=1,2,..., a)
in the light of eq. (1). The subdivision of A, into the corresponding sub-orbits is
accomplished in terms of eq. (4). Table 3 summarizes the subductions of CRs for C,,.

When we apply theorem 2 to G,(/H,?), we obtain the following corollary-con-
cemed with chirality fittingness.

COROLLARY 2.1

A coset representation Gj(/HkU)) can act on:

(a) a sub-orbit that takes only achiral ligands, if both Gj and Hk(DSGj contain
improper rotations (an achiral part);

(b)  a sub-orbit that takes achiral as well as chiral ligands, if both Gj and Hk(f) < GJ.
contain only proper rotations (a neutral part); and
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Fig. 2. Orbits and sub-orbits in subduction of coset representation.

)

Table 3
The subduction of Cav(/G‘.)lGj

i
i c, C, c, c,,
c, (C)) 6C,(/C,) 3¢(/C) 2¢,(/C,) c, (C)
c, (/C) 3¢,(/C,) CUC) +CC)  C,(C) c, (/)
"€, (/Cy) 2¢,(/C,) cuc,) 2€,(/C,) C, (IC,)
c,c,)  cc) c(c) c,ic,) c, (/C,)

(c) a sub-orbit that takes achiral as well as chiral ligands, if G, contains improper
rotations and H,¥’ < G contains only proper rotations (a chiral part).

In order to simplify notations, we use the following formal expression containing
achiral, neutral, and chiral parts:

Gj (/Héj)) — Zzgi)Gj(a)(Hk(j)) + Xb(i)Gj(b)(/HkU)) + ZCJ)G (C)(/H (J)) (6)
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where x O + 30 + y @ =1and 19, 1, and x are all non-negative integers. The
superscripts (a, b, and c¢) denote achiral, neutral and chiral parts. The right-hand side of
this equation indicates that only one of the three parts is effective.

In the light of this notation, eq. (4) is replaced by eq. (7), which affords a
decomposition into achiral, neutral, and chiral parts:

GG G;= Z 24 5<‘1>G<a>(/H(J)) + Z Zb)ﬁ(”)G(b)(/H(’))

Vj . .. .
+ 3 AR BGOUHY), fori=1,2,...,5 and j=1,2,...,5. (7)
k=1

The resulting sub-orbits are classified into three categories, i.e. A“" A‘gb and A%,
which are acted on by G(UHP), GPUH) and GPOUHD), respccuvely We call the
sub-orbits G achiral, G ~neutral and G ch1ra1 sub orblts respectively.

The degree ofG“{(/H‘”) is dy, = IG I/IH, in which $ denotes a, b, or ¢ for
achiral, neutral, or chlral respeCUVely Thls is equal to the length of each subdmded
orbit Ai“ (B=1,2,..., B%). We then assign a variable $4, to the sub-orbit A‘“
which G“‘)(/H Y) acts. Since the multiplicity of this orbit is B, a variable for Lhe

sub-orbit A,‘Cg is represented by

@ x(‘{)ﬁi"f) @ X%{)ng) @ x(cjl?ﬂgj)
CORNC) GO ©

It should be noted that only one of the three terms is effective in the light of XU), ka’

and Ck

By using the variables represented by eq. (8), we arrive at:

DEFINITION 1
(Unit subduced cycle index with chirality fittingness (USCI-CF).)

(j) BN

U xgkngfﬁ (Dﬁ(/)
)™ (o) } 0

The sum of the powers in each of the parts of eq. (9) is also useful to enumerate
organic structures. We define

k=1

Z2G(1G) 4 G, ab o) = lJI Ka((ijf))

B = Z 2B, (10)
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vj
. -
B = kzl 2B, (11)
and
i . ..
B = X al B, (12)

which are the numbers of sub-orbits of the respective chiralities. These are summarized
in the form of

b
(857, B B,

We call this term the orbit index for the SCR. The data of table 3 provide tables 4 and
5 for the C, group by this procedure.

Table 4
Unit subduced cycle index for Cav(/Gx)J’Gj

i
i C, C, c, c,,
C,c) bf Ci béz %
G,uc) b? 4,6 by a4
C,(/Cy) b% & b} )
GG, b, 4 b, ¢y

Table 5
(B, B, B for €, (IGHLG;

i
i Cl C.f C3 C3v
C3v(/Cl) (0,6,0) 0,0,3) 0,2,0) (0,0,1)
¢, (/C) (0,3,0) (1,0,1) (0,1,0) (1,0,0)
C3v(/C3) ©0,2,0) 0,01 (0,2,0) (0,0,1)
c, C,) (0,1,0) (1,0,0)  (0,1,0) (1,0,0)

5. Orbits of configuration and their symmetries
Let A = {61, 62, e 6l A[} be a domain which consists of 1Al elements called

positions. Let X = {X, X, ..., X ;,} be a co-domain which contains |X| elements called
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figures. In chemistry, the figures may- be ligands or atoms. Suppose that fis a function
(called a configuration), i.e. f:A — X. The mode of this mapping is restricted by the
following weights:

WoX,) (13)
fori=1,2,...,5, = 1L,2,...,and r=1,2,...,1X], which is assigned to each
element X of the co-domain X in agreement with the behavior of each orbit A, . We

then define a weight W( f) for each function f.

DEFINITION 2

The weight of a function is represented by

M I wielf&)

i=1 a=0 §e Aig

W(f)

Il

I_I [T wia(8) TI wia(f(8) II wia(F(8))|. (14)

Se Al‘;s de A;“;b Se A;%C

il
1l ::}a

The products in the parentheses of eg. (14) are monomials of total powers of d, 3%,
4,8, and d, B, respectively.
A set of all functions (f: A — X) is defined as

F={fify-oiifpoeiiSueeifp)

Y

Suppose that a group G acts on domain A = {§, 8,,...,8,,} in the form of the
corresponding permutation representation F;, on A and that the group G acts simul-
taneously on a co-domain X = {X, X, .. ., X,,} via a permutation group @, on X. For

Pg € P, and Qg € Q.. a binary relation between f,y (e F) and f‘g (e F) is defined as

ngy(5) =fE(Pg(5)) for Vée A, (15)

which holds for 3 g € G. This binary relation is an equivalence relation. Hence, this
affords a partition of the set (F) into equivalence classes. This type of action was
discussed in detail by Hésselbarth [3]. In order to simplify our discussion, Q (X ) is an
operation that keeps X invariant for a proper rotation g € G, but gives its annpode X *)
for an improper rotation g€ G.

Let A o f be a mapping corresponding to g€ G and let A, be a set
containing eﬁl ,1 Then A, is proved to be a permutation mpresentanon of G
(appendix G). Hence theorem 1 (egs. (1) and (2)) also holds for this case.
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THEOREM 3

Suppose that a group G acts on F by the simultaneous actions of G on A and X.
The action constructs a permutation representation A, on F. The multiplicity of each
transitive coset representation G(/G‘.) in AG is determined by

Ag = -ilBiG (/Gy), (16)

wherein B;'s are non-negative integers. The multiplicities B, are obtained by solving the
following equations:

s
Z'ZIB,‘m,'j‘, forj=1,2,...,s, (17)

where pis the mark of G in Ag.

Each orbit correspondmg to a transitive G(/G,) contains functions (configura-
tions) of symmetry G,. Hence, B, is the number of dlfferent configurations of symmetry
G.

" The mark P, is the number of fixed functions (configurations) of F with respect
to G Suppose that an appropriate configuration £ € F is fixed to all the elements

g€ G This requires
0,f V8 =fUP (&), for Ve A and VgeG,. (18)

Let us now go back to the division into orbits and the further subdivision into
sub-orbits shown in fig. 2. Then, in order for f () (e F) to be constant with respect to
eq. (18), all the positions of each sub-orbit have to take the same figure (or ligand) of
suitable chirality. If the sub-orbit is an achiral part, there are |X, (")l ways of substitution
for each sub-orbit A% , where X is the number of non- 2610 w, (X ) with achiral
X, for each sub- Ol‘bl[ Al‘g Since the number of sub-orbits is B(“) the number of fixed
conﬁguratlons for chiral parts contained in A,  is represented by

ai
I @™, (19)
a:

where IX(")I = 1.
Slrmlarly, the number of fixed configurations for a neutral part is obtained as
follows:

o; b)
I &, @0)
a=0
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where ng’)l =1 and
IX?;)I = the number of non-zero w, (X ) for each sub-orbit ALZb =1X, |
For counting the number of fixed configurations in a chiral part, a saturation of

each orbit with chiral ligands is accomplished in either of the following two ways, due
to its chirality fittingness:

C |C Cc |C or C# C# C# C#
C# C# C# C# C |C Cc IC
Thus, we obtain
o
i BSC)
IT IxQ™, 1)
a=0

where IXE(C))I =1 and
X (21 = the number of non-zero w, (X, ) with achiral X_plus twice the number of
non-zero w, (X ) with chiral X _(one of the antipodes) for each sub-orbit
1124
Akﬁc
= the number of non-zero w, (X)) with achiral X and chiral Xr
=X .‘a"
The product of egs. (19), (20) and (21) provides the number of fixed configura-
tions for each orbit A, . A further multiplication of the products over all s is equal to
pj. Hence, the following corollary is derived from eq. (17):

COROLLARY 3-1

s 24
By B B c .
‘]'[1 HO[[X‘-(Z) T O x © ’]: Y Bimy, j=1,2,...,5. (22)
i=] a= i=1
Since X®I = 1X©I = |x_ |, a simpler expression can be derived:
S e @Y poepe] S ‘
I T @ ] = 2 Bimy, =125, (23)
i=1 a= i=1

Example 1. In appendix B, we have shown that the vertices {1, 2, 3,4} of a trigonal
pyramid (C,)) are partitioned into two orbits, i.e. A, = {4} on which C,(/C,) acts and
A, = {1, 2, 3} on which G, (/C) acts (fig. 3).
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Fig. 3. Orbits of a trigonal pyramid.

Suppose that the orbit A, takes A, B, C and C* and that the orbit A, cantake A, C
and C¥, where C and C* are armpodes to each other. For this purpose, we choose
X = {A, B, C,C*} as a co-domain and determine the following weights:

w,(4) = A, w(B) =B, w(C)=C, w(C"=cC* for A, and
w(A) = A, wy(B) =0, w(C)=C, w(C* =C* for A,

In terms of these weights, the number of allowed ligands are obtained as follows:

IX® =2, X®I=4, and X =4 for A, and

X®1 =1, XP1=3, and XYI=3 for A,
From table 5, we pick up the rows of C, (/C,) and C, (/C)). For example, (0,1,0) and
(0,3,0) for the C, column afford pc, = 2°4'4°1°3°3° = 108 by using the left-hand side
of eq. (22). Similarly, we obtain

pc, =2'1'3' =6, pc, =4'3' =12 and pc, =2'1"'=2.

We then find eq. (22) for this case:

(108 6 12 2) = (B¢, Be, Bc; Bes,)

- b3 W N
—_—O = O
-y OO
—_s OO
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Fig. 4. Isomers based on a trigonal pyramid.
This provides

BC] = 14) BC‘;' = 4’ BC3 = 5’ and BC3V = 2‘

B
c* ,:IC
Jﬂc A C:t (S
C A
J:f Aﬁ |
A C C

+antipode

(

Figure 4 lists the isomers derived by the enumeration of example 1.

antipode
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6. Enumeration of configurations with a given symmetry as well as a given
weight. The most general case which takes the OMYV into consideration

In this section, we enumerate the number of configurations with a given sym-
metry as well as a given weight on the basis of a given skeleton. We start from:

LEMMA 1
Let fy: A —> X and f.: A — X be equivalent. Then

W(f) =W(f), (24)

where the weights are given by eq. (14) (appendix H).
Let F be a set of functions (f: A—> X), all of which have the same weight
Wo(f):
]

8y _ g 2] 2] [} g
FO={fO, £9 O 1O DY, (25)

where y = [F®|. Then, we can obtain a permutation:

;L;m:(ng%“’?‘l:-~»ngw‘9’f;-%-..,ngu‘f”’g"lj. co

[ L 2 L, P

Let the symbol A denote the set of AP for g € G. It can be proven that A is a
permutation representation of G (appendix I) This result allows us to apply theorem 1
to AY. Thereby, we end up with:

THEOREM 4
AP = ¥ BeiG (/G)), @7)
i=1
and
s
pej:zBGimija j:I,Z,...,S. (28)
i=1

The symbol (B,,), which originally denotes the multiplicity of a transitive coset repre-
sentation (G(/Gl.)), also indicates the number of isomeric configurations with G, sym-
metry as well as a weight W,. The values of the By, can be calculated with eq. (28), if
the marks Py are estimated.

By using a fixed-point (FP) matrix (pej), an isomer-counting matrix (B,), and a
mark table (mij), eq. (28) can be altematively expressed as follows:
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Z” ZUZ]S By, .. By
21 -+« P2j oo+ P2s B21 ‘st 1 mys
nmao ... Moy
Po1 ... Poj --- Pes = . (29)
mgy o
Pioir ... Prgij ---Pigis Bigty ... Bl
(Pej) (Boi) (my;)

The next task is the evaluation of Pg;- Let us now define a subduced cycle index
with chirality fittingness using eq. (9).

DEFINITION 3

A subduced cycle index with chirality fittingness (SCI-CF) is defined as

Z(Gj; a,b, C)= f[ ﬁ Z(G (/G,‘) lGj; a,b, C)
i=1

=0

s a; v; @ g{)ﬁgﬂ @ xwﬁi"ﬁ @ xg{)ﬂgﬂ
— 24 .
- H l—I H (ad]k ) (bdjk ) (Cd'k ) ] (30)
i=1 a=0 k=1

)
for j=1,2,...,5

The SCI-CF is the product of USCI-CFs (definition 1) over all i and a. Now we arrive
at lemma 2 (appendix J).

LEMMA 2

The generating function for marks Pai with a weight W, is given by the following
figure inventories:

2.pe We =Z(Gj; a, b, c), (31)
6
wherein the right-hand side is substituted by
dik
o) = Z WX, (32)
X!

by = 3 wia(X)%, | (33)
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and

@ X1 ® djk X © (cH dix /2
Cap = rgl Wia (Xr ) +2 3 [Wia (ch )Wia (ch )):| . (34)

r=1

Lemma 2 gives a generating function for calculating marks p,, which are in turn
introduced into eq. (28) or (29) to yield the number (B,,) of configurations of symmetry
G,. It should be noted that an SCI of definition 2 can be practically obtained by an
appropriate multiplication of such USCISs as collected in table 6. The following example
illustrates these procedures.

Example 2. The enumeration of isomers based on a trigonal bipyramid (example 1) is
re-examined by the method of this section. We pick up the rows of C, (/C,) and
C3v(/CS ) from table 4. Generating functions are obtained in terms of lemma 2, i.e.

(bl)“)(b?)(z) =(A+B+C+CHA+C+C", for C,,
(a)a,c)? = (A + B)A(A + 2CCH), for C,
b)) =(A+B+C+ CH(AY+ CP+ CP), for C,, and
(b)Ma)? = (A + B)A’, for C, .

The terms with superscript (1) are concemed with the row of C, (/C, ). The other terms,
with superscript (2), stem from the row of C,(/C). These generating functions are
expanded and the coefficients of two terms for each pair of mirror images are collected
to give a matrix (p, ). The number of isomers are obtained by multiplication of the
matrix (p,) with the inverse of the table of marks derived from table 1 (fig. 5).
Obviously, the sum of the values for each subgroup (with respect to each column) is
equal to that obtained in example 1. We have already illustrated the isomers in fig. 4.

A slight modification of lemma 2 gives a method for counting isomers in the case
that forbids chiral ligands (appendix K). This is illustrated by the following example.

Example 3. The adamantane skeleton (2) of T, symmetry has ten positions, which are
divided into two orbits (six methylene and four methine positions) in accord with

Pr, = T4(/Copy) + T4(/C3y).

This reduction allows us to use Td(/CZV) and Td(/C3v) rows of a table of USCIs (table
6). We select X = {C, N, O} as a co-domain and determine weights:

w(@O=x, wilN)=y, w(©O)=2 forA, and
1 1 1 1
w,(C) = x, wz(N) =y, w,(0)=0, forA,
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1 5 3 3v 1 s 3 3v
! -~
Al ( 1 1 1 1 Y[1/6 o o o ( o o o 1 )
ASB 11 1 1 -1/2 1 0o o o 0 o 1
adc « adc? 8 0 2 o -1/6 0 1/2 o0 1 o0 1 o
A%pe + afpcf 6 0 0 o0 1/2 -1 -1/2 1 1 o 0 o
Pl
alc? . a2ct? 12 0o o0 o0 2 0 0o o
alec? 12 2 o o 1 2 o o
apc? + apch? 6 0o 0 o0 1 0o o o
apcc? 6 2 o0 0 o 2 0 o
ac? .+ ach3 8 o 2 o 1 o0 1 o0
2 E .
acce? + oace 24 0 0 0 N0 o o
pc? + pef3 2 0 2 o o 0o 1 o
pc?e? vsec’2 | 6 0 o0 o I 0 0 o0
! 1
o a et 2 0 2 o o 0o 1 o0
et v et 8 0 2 o 1 o0 1 o0
2 H
c2c 6 0 0 o 1 0 0 o
~ ’ -

the inverse of numbers of lsomers

())93)

the table ol marks
Fig. 5. Isomer counting based on a trigonal
pyramid under the OMYV restriction.

in accordance with the OMYV restriction of the skeleton. We then find figure inventories,

sW=x"+y"+2% for A and
T 1

5P =x"+y", for A,
Lemma 4 (appendix K) gives the following generating functions for the pej's:

GHOGEHD = (x +y + 2%x + ), for C,,

(s2DOEHD = (x + y + 222 + ¥ + 2P + YD, for C,,

(1sDD(s2s )P = (x +y + X + Y + DHx + )(* + y), for C,
— 3

(DD, 5)P = (P + ¥ + 2P + 9 + YY), for C,,

(5,500 )? = (o + y* + A + y* + D + ¥, for S,,
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DN )P = (6 + Y + 2P + YY), for D,,
(25 )06HP = (x + y + 27 + ¥ + 2907 + YD forC,,
DV, 5)? = (2 + ¥y + 2 x + ))& + ¥, for C,,,
(5,5)0(5)® = (2 + y* + (¢ + y* + 290 + Y, for D,,,
()M )P = (2 + y5 + 250 + yY), for T,
(5 )P = (& + y° + (" + Y, for T,

in which the superscripts (1) and (2) correspond to the T d(/C2v) and T (/C,) rows of
table 6.

Table 6
Unit subduced cycle indices for T,

~ ¢ ¢ C ¢, Sy D, C. G Dy r T,

H
TGC) s 5, 5212 “'38 5,° 5¢° 546 564 sy’ 10 Sy
T,(C) 3112 S14524 ‘926 S34 Szzs.az S26 522542 S62 343 Ssz S12
Td(/C's) 5 12 526 512325 s34 s43 s43 xzzsdz 332 Se S48 i, Sy
T0C)  s° 5, 5, s 12332 5,7 52 st 5% g s’ S8
TSy s,° 528t s’ A T S35 g Se
T,(/D,) Sié 5°08) sy’ 5°00s) s s’ 5P 5
T(C,) 516 512322 slzszz S32 554 323 51254 532 $2% S s
T,0C,) 514 522 51252 5%y 8 S 522 $1% 5 54 S
T,UD,) s’ 5P s, s 58 850 88 8 1% 5 53
T (T) slz slz s, sl2 5, sl2 s, s, s, Slz 5,
Td(/Td) s s, 5, 8, 5 $, 5 s s, 5 5|

The expansion of these generating functions gives the values of Paj» which
construct an FP matrix. The FP matrix is multiplied by the inverse of the mark table for
T, (table 7) to yield A gi- The values thus obtained are found in table 8, which shows the
number of isomers with W, = x?'y??z”* (the row) and G (the column).

As an illustration of the result, fig. 6 collects C,N, as well as C 0, isomers based
on the adamantane skeleton. The coefficient of x*y? reveals that there are five isomers
with C,N,. That of x*2z* is the number of C,0, isomers. This difference comes from the
OMV restriction, by which an oxygen is forbidden to occupy the bridgehead positions
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I U1- I~ I~ 0 Ut 0 Ut I 0 ui- I
0 il 0 0 0 9/1- 0 Ut 0 0 9/1 L
0 0 { 0 Ui Ui- - 0 0 U o "a
0 0 0 I 0 0 0 U1- - 0 /A S
0 0 0 0 U 0 0 0 Ui- v/1- vt "o
0 0 0 0 0 9/1 0 0 0 o/1- it ‘a
0 0 0 0 0 0 7 0 0 Y- 0 's
0 0 0 0 0 0 0 a 0 0 ag1- ®
0 0 0 0 0 0 0 0 i 0 wi-
0 0 0 0 0 0 0 0 0 A 8-
0 0 0 0 0 0 0 0 0 0 YTl )
Cin'r an’t  Can’t Con't Con’r CGan’t Csn't Con'a OGN Con®t ot N\

PL 30 a1qm yreur oy Jo (Jy) asIAW By,
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Table 8
Enumeration of isomers based on an adamantane skeleton (2)

Py
(0)

Py
N)

©)

10

16
12

10
15
10

25

26

11

10
16
10

25
34
22

16
26

15
10

22

12

11

10
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Table 8 (continued)

Enumeration of isomers based on an adamantane skeleton (2)

) Py
(N)

7y
©

©

10

Lal

(Cs)

\/N
N\

050

(Cyy)

(D)

gy

(Cs)
Fig. 6. Isomers based on an adamantane skeleton.
(D)

Ceoz{; 0
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of the skeleton. Figure 6 also shows that the five C,N, isomers are classified into three
C. isomers, one C, isomer and one D, isomer. The two C,0, isomers are divided into
one C and one D, isomer. These numbers appear as the values collected in table 8.

7. Special cases

This section deals with the derivation of a special case in which the OMY is not
considered. For this purpose, all weights given by eq. (13) are redefined as follows:

w (X)=X, (35)

fori=1,2,...,s; a=1,2,..., 05 and r=1,2,...,1X]. Thereby, the weight of a
function (configuration) is found to be

W)= 11 wia(f(8)). (36)

de A

Suppose that IX®1 = 1X®) and IX®)1 = 1X©) = 1XI. Then, we can apply corollary 3-1 to
the special case. Hence, we end up with:

COROLLARY 3-2

&
[Ix @ ¥ aBf x| Mo PP = 3 Bimy, j=1,2,....5.  (37)
i=1

This corollary is more informative than Hisselbarth's counterpart [3], since the present
result contains the number of orbits in the explicit powers that are derived from a novel
treatment of subduced representations.

The definitions of this section indicate that the variables

a (a P a
a‘(,jk), bdjk), and cf,jk)

are independent of their orbits. Thus, we can omit the superscript (&), i.e.

al = ag,, by = by, and cfP = cqy . (38)

By using these variables, we transform the right-hand side of definition 3 into a simpler
form that is suitable for the special case. Hence, we find a new definition for a subduced
cycle index:
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DEFINITION 4
A subduced cycle index (SCI) without consideration of OMVs is defined as

Uj

2655 ab,) = I | a3 () 0% | (39)

where the powers of the respective terms are represented by

a9 =3 ax B, (40)
i=1
¥
qgj) — 21 o x(})ﬁg/), 1)
and
= 3 ax P, “2)

Using the subduced cycle index, we transform lemma 2 into lemma 3 that is suitable
for the special case of this section (see appendix J).
LEMMA 3

If G < G acts on A and no OM Vs are considered, a generating function for marks
Py with a welght W, is as follows:

%Pej Wo =Z'(G;:a,b,0), (43)
where
X1
o= 2 (X (44)
r=1
X1 Xl 1X
ba, = Z (X, )% = Z X (“’) + 3 (XS4 Y (XY, (45)
r=1 r=1
and
X1
Cd/k Z (X(a))({,k +2 2 (X(C)X(C#))d)k/z (46)

Lemma 3 yields a set of marks Psi that is necessary 10 enumerate isomers with a
subsymmetry G] <G and a weight 9 based on a parent skeleton of symmetry G. The
values of p,. are introduced into theorem 4 (eq. (27) or (28)) in order to obtain the
number (B&.f of isomers of symmetry G,. A more special case that enumerates isomers
only with achiral ligands and without consideration of OMVs is similarly manipulated
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(appendix L). This case will be reported elsewhere, in particular for the purpose of
clarifying the relationship between the present result and Pélya's theorem.

8. Conclusions

Enumerations with and without the effect of obligatory minimum valency (OMYV)
have been discussed. Each position of a given skeleton has the OMV that determines
the mode of substitution at its position. The OMV can be treated with the idea that
different weights are assigned to different orbits of positions. This yields several new
concepts such as chirality fittingness and a subduced cycle index with three parts.

Appendix A

Coset representations as transitive ones. Coset representations (CRs) are a kind
of permutation representations that play an important role in the present enumeration.
Let G be a finite group. Let H be a subgroup of G. The set of (left) cosets of H in G
provide a partition of G. If we adopt a set of {g,, g,, ..., 8} as a transversal (i.e. a
system of representatives), we obtain the partition:

G=Hg +Hg,+...+Hg , (A1)
where g, =1 (identity) and g € G. Let us next consider the set of the cosets:
(Hg,Hg, ..., Hg }. (A2)

The coset representation (CR) of G by H that is denoted as G(/H) is a set of permuta-
tions of degree m:

_ Hgla Hg2 3oy Hgm
G (H), _(Hglg, Hgg ..., Hgmg)’ (a.3)

for any g € G. The degree of G/(/H) is m =1G|/IH|. Obviously, the coset representation
G(/H) is transitive and, in other words, has one orbit. When H and H’ are conjugate
subgroups of G, the corresponding coset representations G(/H) and G(/H") are equiva-
lent to each other.

Representatives of conjugate groups. Suppose that the number of representatives
of conjugate subgroups in a finite group G is s, where an appropriate representative is
selected from a set of conjugate subgroups. We select a system of representatives,

886 ={G,, G, ...,G}, (A4

in an ascending order of their orders, i.e.
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IG1<IG, <...<IG|,
§

where G, =/ (identity) and G, = G. We call this sytem a system of subgroups (55G).
The set of corresponding CRs, G(/G)) (i=1,2,...,9), is the complete set of different
transitive representations of G. Obviously, G(/G)) is a regular representation and G(/G )
is an identity group.

A table of marks. A mark of H (£G) in a permutation representation of G is
defined as the number of fixed points of a G-set on the action of the subgroup H.
Suppose that G (i=1,2,...,5)is an SSG of a finite group G, as defined above. Let
G(/G,) be a coset representanon The mark of G in G(/G,) is a constant for each i and
j and is denoted as m, . The table of marks m; for all i and J will be used in theorem 1.

An orbit subject to a coset representation. The feature of G(/G‘.) can be under-
stood by the following explanation. The coset partition of G by G, yields the correspond-
ing transversal (g, 8,,...,8,-.-.8,}, where m = 1Gl/IG, . Let G, be a stabilizer of

36 of A. This means that G holds 6 © 10 be constant. We can consider that g, (€ G)
converts 6 into 6. Hence, G. 8, corrcsponds to 6T(‘) in a one-to-one fashion. As a

result, G(/G) that ongmally acts on {Gglrt=1,2,. m} can be considered to act
alsoon A, {5(‘)17 =1,2,...,m}, where a denotes one of such equivalent orbits.
Appendix B

Orbits in a trigonal pyramid (C, ). Let us consider the set of vertices of a trigonal
pyramid to be A = {1, 2, 3,4}, whose apex is vertex 4. The C, group contains six
elements, i.c.

G=C, =1{LC, C2 o

%y Oupy Oum)-
By counting fixed points for the respective subgroups, we can obtain marks as follows:
l’lcl:4’ l’lcszz’l'lc3:1’ and !’LC3V:1

If we introduce these marks into eq. (2), we find

4211)=(ac, ac, 0c, Oc,,)

— b W O
— e OO
-0 OO

0
1
0
1
which in tumn yields

Oc, = 0, Oc, = 1, Oc, = 0, and Oc,, = 1.
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Hence, the permutation representation has been reduced to the form of

P v — CBV(/CS)+C3V(/CBV)~

The result is in agreement with two orbits, A = {4} and A, = {1, 2, 3}, in which A, is
acted on by C, (/C,) and A, by C3v(/Cs ), as shown in fig. 3. The concrete forms of the
CRs have been collected in table 2.

Appendix C

Proof of eq. (3). Since the subduced representation G(/G,) d Gj is a permutation
representation, egs. (1) and (2) hold for this case. Hence,

G(/G,)1G; = 21 BG;(1HD), C.1)

where H{” denote a subgroup of a conjugacy class of G;; G,(/H; ) is the CR of G,
by HY; B{'” are non-negative integers; and v is the number of conjugacy classes
of subgroups The multiplicities 4/ are obtained by

Uj
v = kzl Bml), 1=1,2,...,v;, (C.2)

where v, is the mark of H in G(/G, )lG In the case of G(/G, )lG the mark of H
in G(/G )iG is obtained as follows-

v1=lGl/|Gjl and v,=v,=...= \§=O.
These values, as well as m(” 0 (I > k), provide
ﬁ(lj) IG|/] G; | and ﬁ(lj) ﬁ(lj) ﬁ(t/) =0.
Hence, eq. (C.1) is converted into
G(GYLG; = (1IGING )G (H D), (C.3)

( ) . . .
where H 7’ is an identity group.

Appendix D

A system of imprimitive blocks. Let P, be a transitive permutation representation
on A by the action of a finite group G on A. If a subset Q (#) of A satisfies the
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condition of PQ Q or P QN Q=0 for VPg € P, the subset Q is defined as an
imprimitive block of the group P, (or of the group G) [11]. Suppose that the group F,
on A is transitive, that the subset Q of A is an imprimitive block, and that the group
Gq) is a stabilizer for the subset 2. Let H denote the permutation representation

corresponding to G(Q>, ie.

PG(Q) =H.

The set of (left) cosets of H in P provide a partition of F,. That is
P,=Ht +Ht,+ ... +Ht, (D.1)

where ¢, = I (identity) and ¢, € F, for k=1,2,..., r. This equation gives a system of
primitive blocks I' = {€, Q. ..., Q }, where Q = Q and tQ=Q.

LEMMA D.1

Let I'= {Q, Q,...,Q} be a system of imprimitive blocks of a transitive
representation ¥, by the actnon of G on A. Since P Qel(r=12,. ..r) for 1; € P,
VgeG)a perrnutatlon represented by

G#_(Ql, Q... Q ) ©.2)
d FQ, FQ,,..., FQ, :

can be defined. The G* = {G*1Vg € G} is a permutation representation which is
equivalent to the coset representation of G by the stabilizer G(q), i.e.

=G (/G ay).

Appendix E

A system of imprimitive blocks with respect to a regular representation. A
stabilizer of each sub-orbit (w,, @,, @) is G(/G )lGJ since this is faithful to G. .
The sub-orbit @, (=Q)) thcreby is an 1mpnm1hve block in A. Equation (D.1) holds f{)r
this case, if we take P G(/G) and H = G(/G, )lG Hence, this fact gives a system
of imprimitive blocks F {Q. Q, NORE whcre each representative ¢_is selected
from Fj to yield 1 Q, = Q (T— 1, 2 , r) as shown in appendix D. It should be noted
that Ihe set of orblts [} are not always 1denucal to I" except €2,. In terms of lemma D.1,
let G* be a permutation group on the system T'. Lemma D.1 mdlcates G* = G(/H). On
the other hand, P c/H) = G(/G), because P, and H are isomorphic to G and GJ
respectively. Hence G* = G(/G). As a result the coset representation G(/G) which
originally acts on the correspondjmg set of cosets (appendix A), can be considered to act
onI'={Q,Q,...,Q]}.
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Appendix F

Proof of theorem 2. The object of this appendix is to examine the mode of action
of G(/G) onl = {Q Q s Qr} from a chemical point of view. We discuss this in
the followmg three cases

(a) G is a group having improper rotations and Gj is a subgroup also having
improper rotations.

(b) Both G and Gj < G are groups of proper rotations.

(c) G is a group having improper rotations and Gj is a subgroup of proper
rotations.

The subgroup G is a stabilizer of the block Q = @, as shown in the above
discussions. Hence, the homomorphic G(/G!)lG isa subgroup that stabilizes €2,. In
other words, the subgroup G or equivalently G(/G) lG keeps € constant.

Case (a). If we assign a chlral ligand C to Ql, the subgroup G. converts this into
the antipode C*, since G, contains improper rotations in case (a). In order for Q2 to be
a constant, we obtain the relationship C = C*¥, which indicates that C (and C*) should
be achiral. In case (a), therefore, G(/Gj) acts on the domain that takes only achiral
ligands.

Case (b). This is more straightforward. Since the group G(/Gj) is not concemed
with improper rotations, any ligands can be available.

Case (c). LetP beG and let H be Gj ineq. (D 1). Since H contains only proper
rotations, eq. (D.1) md1cates that the transversal {z, £,, ..., } consists of r/2 improper
rotations and r/2 proper ones. Note that ¢ €, = Q Hence if we assign a chiral ligand
(C) 10 Q, the r/2 blocks of I' can be a351gned to C and the remaining r/2 ones to the
antipode (C”) On the other hand, if we assign an achiral ligand to Qv all of the r blocks
in I can be assigned to achiral ligands. Therefore, G(/G ) acts on the domain that takes
achiral ligands as well as chiral ones. The mode of substltutxon with chiral ligands is
illustrated in the text.

Appendix G
Proof of A being homomorphic to G. Let us consider a mapping A,g fo— f

ie. l QfP‘1 —>f orf —)Qg 1fP Suppose that bothf and f, (f #f)aremapped
by). to the same functlon ie.

“‘f (P (8) = 1f(P (6)) for Vée A

This indicates that f (P (0)) = f (P (6)). In other words, f f which is contrary to the
presumption. Hence this mappmg /1 is a permutation on F
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1 _(nglf?l s ngimpg’lj
L A sares Sk

(N firl
_(Qg-]flffg yeess Qg—lfmpg)- (G.1)

Equation (G.1) indicates that g € G corresponds to the permutation l Let A, be the
set that contains i{ for Vg € G. For any g’ € G,

L QAP
lg'lg:(”_ lfy j( y )
z( ngypl J
2 b

-( M”} R

This indicates that the group A, is homomorphic to G. In other words, A is a permu-
tation representation of G.

Appendix H

Proof of lemma 1. Since fy ~f,» the definition (eq. (15)) shows that there is an
appropriate g (€ G) which satisfies

Q1 8) =f(P(8) for Ve A

Hence, we find

W, f,)
=T1 T1| 1 wiliPe®) I wialiP,3) T1 wia(hP,(5)|. (H.1
i=1 a=0| §e AL‘E_ 6eA‘%b 6EA;‘EC

On the other hand,
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=11 { [T wia@f@®) T wia@ @) I w,a<ngE(6)>}

a=0}| §e A;:‘;i- e A‘k‘;b e A;‘gc

ﬁ [ M wiafe®) T wialfe®) I1 w.'aoz(a))} (H.2)

de AL‘I’;_ de A;‘;b de A;:%c

since a set of Q (5)'5 is the same as that off(6)s except for the sequence. A
comparison bctwecn the right-hand sides of egs. (H 1) and (H.2) reveals that W(Q f )
=W(Q Kf ), since a set of P (&)'s and one of &'s are the same except for their sequences
This equation indicates that w(Q gf )= W(f ). Similarly, W(ng}) Therefore, W(f))

= W(£).

Appendix I

Proof of A(g) being homomorphic to G. Let F® be a set of functions ( f:A—-X),
all of which have the same weight Wg( )

6 8 9 6 ] 8
F( )={f1( )afz( ),...,fy( ),---,fg( b V(,)}, (I.1)

where w = IF®®|. We can obtain a permutation,

-
-

A(G)_(ngl(ﬂ)}}—l ngy(e)p{l Yy ngw(e)])gq)
;=

g 6 0
® B f®

(6) (6) e (6)
_( fl L 14 ’ f‘l’ ) (1.2)

B Qg—lfl((?)pg s Qg—lfy(B)Pg s Qg_lfu(/g)Pg

Let the symbol A% denote the set of K(Q) for Vg € G. The next issue is to prove that
K(G) is a permutatlon representation of G.

o[ KOG
L W SV AL A C))
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20 [ £90) T A C)) I
T QOB )T GEOERG) .
(o GUEOBG)

- KGO ERO)

(o GUHOERGE)
o OB O) L)

since IZ,IZ = Pg,g and Qg, Qg = Qg,g. Hence,

£LO(8)
(6)7(6) _ v .
2492 _( OB (8 | (1.3)

This equation indicates that the mapping of G (or P ;) Onto A(e) is homomorphic. In other
words, the group A(g) is a permutation rcprcsentatlon of G

Appendix J

Proof of lemma 2. In order to find marks Py WE consider a series of Py 'S in
column j of (pa) of eq. (29). These elements are 1he numbers of fixed conﬁguranons
of symmetry G/ Figure 2 holds for this case. Hence, the above discussion on eq. (7)
indicates that x B or %) B or ' B¥) orbits of length d, emerge during this
operation. For the purpose of constructing a fixed configuration, eac,h of the G -achiral
orbits of length a; has the same achiral ligands. Hence, the corresponding genemtmg
function is found as follows:

1 X1
ap =¥ wia (X%, (1.1)
r=1

where X’ @ denotes an achiral ligand. For each of the G -neutral sub-orbits, all types of
ligands are available. Hence,

1X1
by = Z Wia(X, )% = Z Wi (XY + 2 Wig (X% + Z Wi /XY (3.2)

r=1 r=1 r=1

where X denotes any type of ligands.
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Each of the G -chiral orbits finds the same situation as eq. (21) and hence yields
the following generating function:

1X1 1X1
i’ = X wialX +2 3 e X Owia (X, (1.3)

r=
where X © and Xr(c#) denote a pair of chiral ligands. Since these equations are true for

all orbits of A, the product over all sub-orbits of A, (i.e. over all subgroups H,”)
yields a generating function:

v X 20800 i x1 250 BED
I1 [Z wia(X,(”)"”} [Z w,—a(X,)df"}
r=1

k=1Lr=1
IXI ) X1 oo 12 24 BN
; ')
X [E Wia(Xr(a)) *+2 2 [wia(xr(C))wia(Xr(c )):] } . (J-4)
r=1 r=1

Equation (J.4) is alternatively obtained by the introduction of egs. (J.1) to (J.3) into
eq. (9). Since eq. (J.4) is true for all orbits of A, the product over all « and / provides
a generating function that contains monomials of total powers of dkﬂ‘.j(“), de./.(b) and
a, ,Bufc). Thus, these monomials are in accord with the definition of weights (Jeq. 14));
d"xerefore, the resulting polynomial is a generating function for enumeration of the marks
o Examination of the concrete form of the generating function shows that it is equal
to the equation which is derived by the introduction of egs. (J.1) to (3.3) into eq. (30).

Appendix K

A special case with achiral ligands only and with consideration of OMVs [12].
Suppose that ﬁ‘jis the number of sub-orbits concerned with G(/G,) 1 G/ Then, egs. (10),
(11), and (12) yield the following result:

b
Bij = ﬁi(;) + ﬁfj )+ ﬁi(jC)

Y . . . y Yi .
= > G+ 22D = X BY. .1

If we assume 1X @1 = 1X ®1 = 1X 91 = 1X_|in corollary 3-1 (eq. (22) or (23)), we can
obtain an equation for the special case.
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COROLLARY 33
s @
IT I 1X:alP =3 Bimy;. (K.2)
i=1 a=0
Under the conditions of this section, we can suppose that
gy = bdjk = Cdjp = Sdj -
Hence, eq. (30) converts definition 3 into:
DEFINITION 5

A subduced cycle index (SCI) with permission for only achiral ligands under
consideration of OMVs is defined as

¢

” s 2 (i .
z (Gj;sifi’)=_[11 Iy 1(s,‘jj.’i’)ﬁk’, J=1,2,...,8. (K.3)
i=1 a=0 k=

Note that eq. (K.3) contains the following unit subduced cycle index (USCI):

” o I
Z"(G (/G;) iGj;séj?FkH P, =120, (K.4)
=1

which corresponds to eq. (9) (definition 1).
Since we permit achiral ligands only, lemma 2 can be converted into lemma 4 by
using the SCI of definition S.

LEMMA 4
2o Wa =Z"(G}: 557, (K.5)
where
1X1 ‘
S = 2 wia(X)™. (K.6)

This lemma gives a set of Py» Which in tum yields B, in terms of theorem 4.
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Appendix L

A special case with achiral ligands only and without consideration of OMVs [12].
In this case, the term ﬁq. is also given by eq. (K.1). If we assume IX®| = 1XI, we can
convert corollary 3-2 into corollary 3-5 for this case.

COROLLARY 3-5
. 5
IX[Ei:la"B"j: ZB‘m‘J’ j:l,2,...,S. (Ll)
i=1

Suppose that ¢ is the number of sub-orbits concerned in Gj(/Hk(f)). This term
is represented by egs. (40), (41), and (42) to be

. . « . S - - . i > i x:
= dP+ad el =3 oG a+x DB = T apP. L
Under the conditions of this section, we can suppose that
dek = adjk = bdjk = Cdjk . (L.3)
Equations (L.2) and (L..3) convert definition 4 into:
" o 4 .
Z (Gj ;deg)zknl(sdﬁ)k) forjzlsza---:ss (L.4)

where g/ is given by eq. (L.3).
Since we permit achiral ligands only, we can obtain the following lemma by
using the SCI defined in definition 6.

LEMMA 5

When only achiral ligands are permitted and no OMVs are considered, a gener-
ating functon for marks (pej) is represented by

%png() :Z”I(Gj;sdjk)a for j=1,2,...,5, (L.5)
where
1X|
dek - 2 X;ijk. (L6)

r=1
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A matrix of p, obtained by lemma 5 was introduced into theorem 4 (eq. (28) or (29)).
Then the number (By;) of isomers of symmetry G, can be obtained.
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