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Abstract 

Molecules derived from a parent skeleton are enumerated where both achiral ligands as 
well as chiral ligands are allowext. Chirality fittingness of an orbit is proposed in order to 
permit chiral ligands. The enumeration is conducted with and without consideration of 
obligatory minimum valency (OMV). The effect of the OMV is formulated by assigning 
different weights to the respective orbits of the parent skeleton. The importance of coset 
representations and their subduction by subgroups is discussed. The subduced representa- 
tions are classified into three classes through their chirality fittingness, which determines 
the mode of substitution with chiral and achiral ligands. Several novel concepts such as a 
unit subduced cycle index and a subduced cycle index are given in general forms. 

1. Introduction 

Enumerations of chemical structures have long been studied by using P61ya's 
theorem, which dates back to the 1930s [1]. In the early 1970s, Ruch [2] pointed out that 
double cosets are useful in enumeration problems. More recently, H~isselbarth [3] 
reported an excellent method that utilizes a table of marks. Brocas [4] dealt with such 
problems by using another formulation which is related to double cosets and framework 
groups [5]. Mead [6] discussed the relationship between these methods, and pointed out 
the merits of H~isselbarth's approach. 

In a previous paper [7], we discussed subduction of coset representations (SCR) 
and presented the SCR notation for a systematic classification of molecular symmetry. 
In addition, we pointed out that several related concepts, e.g. unit subduced cycle 
indices (USCIs) and the USCIs with chirality fittingness (USCI-CFs), are useful for 
qualitative discussions on molecular symmetry. In continuation of the work, this paper 
clarifies their meanings (especially that of chirality fittingness) and deals with a quan- 
titative application of the USCI(-CF)s to enumeration problems. 
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122 S. Fujita, Subduction of coset representations 

2. Orbi ts  specified by coset representations and obligatory minimum valencies 

If a skeleton of a given symmetry is considered to be a chemical objective, the 
positions of the skeleton are classified into several sets (orbits) of equivalent positions. 
For example, noradamantane (1) has four orbits when we consider the carbon skeleton 
only. Similarly, both adamantane (2) and iceane (3) have two orbits. For the purpose of 
enumerating chemical structures, it is necessary to clarify the symmetrical behavior of 
such orbits. 

1 2 3 

This task is accomplished by considering a coset representation (appendix A). 
We use the symbol G(/Gi) to denote a coset representation (CR) of G by a subgroup G i. 
The following theorem has already been proved in Bumside's excellent book [8]. 

THEOREM 1 

Any permutation representation Pc of a finite group G acting on A = {al' ~52 . . . . .  Rex,} 
can be reduced into transitive CRs in accord with the following equation: 

s 

PG = Z aiG(/Gi). ( 1 )  
i=1  

The multiplicities (a.) are non-negative integers, which are obtained as solutions of  the 
following equation: 

s 

laj = ~., a i m i j ,  j=  1 , 2 , . . . , s ,  (2) 
i = l  

where /4  is the mark (the number of fixed points) of G. in Pc" The symbol m_ denotes 
in the marl~ of Gj G(/Gi). J 

In chemical applications, the G-set (A) is regarded as a set of positions contained 
in a skeleton. Equation (1) divides the set into orbits in the manner that a transitive 
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G(/Gi) acts on each of the ct i orbits, Ail, mi2 . . . . .  and Ai~ (i = 1, 2 . . . . .  s), the 
respective length of which is equal to IGI/IGil. The total number of such orbits is 

$ 

Z O~ i . 
i=1 

For an illustration of theorem 1, appendix B deals with a trigonal pyramid of C3v 
symmetry. This calculation requires a table of marks such as that listed in table 1. The 
concrete forms of coset representations for the C3v group are found in table 2. 

Table 1 

Mark table of C3v 

C 1 C s C 3 C3~ 

C3,,(/C~) 6 0 0 0 

c3,,(/c) 3 1 0 0 
c3~(/c 3) 2 o 2 o 
C3,,(/C3,,) 1 1 1 1 

Table 2 

Coset representations of C3v 

c3v c3~(/c~) c3v(/c) c3~(/c 3) c3~(/c3~) 
I (1) (2) (3) (4) (5) (6) (1) (2) (3) (1) (2) (1) 

C 3 (1 2 3) (4 5 6) (1 2 3) (1) (2) (1) 

2 (1 3 2) (4 6 5) (1 3 2) (1) (2) (1) C 3 
O-vo ) (1 4) (2 6) (3 5) (1) (2 3) (1 2) (1) 
%(2) (1 5) (2 4) (3 6) (1 2) (3) (1 2) (1) 
%(3) (1 6) (2 5) (3 4) (1 3) (2) (1 2) (1) 

In the present enumeration of chemical structures, a molecule is considered to 
be a derivative of a given skeleton with appropriate ligands (or atoms) on its positions 
(vertices). From this point of view, it is necessary to consider an obligatory minimum 
valency (OMV) inherent in each position of the skeleton. The OMV is the degree of the 
position in a graph-theoretical sense [9,10]. For example, in the noradamantane skeleton 
(1), two orbits (methylene bridges marked by heavy clots and by a small triangle) have 
an OMV = 2, which indicates the capability of taking C, N, and O from a set of  C, N, 
and O atoms. The bridgehead positions of 1 construct two orbits, which have an 
OMV = 3. This means that these positions take C and N but no O. 
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Thus, the OMV restricts the mode of substitution at a position, in which the 
position is incapable of taking an atom or a ligand that has a valency less than its OMV. 
Hence, we should take the OMV into account in enumerations of molecules. Since 
positions of  an orbit have the same OMV, the effect of  the OMV can be formulated by 
assigning a different (or, more strictly, an independent) weight to every orbit of  a parent 
skeleton. 

3. Chirality fittingness of an orbit 

This section discusses another chemical explanation of coset representations 
(CRs) and affords a foundation to the concept of  chirality fittingness. The discussion 
stems from the relationship between a regular representation (RR) and other CRs. 

A regular representation G(/G1) on A = {81, 62 . . . . .  ~z~l}' where G 1 = C1 and 
IAI = IGI, is a faithful representation of G acting on A. Let G. be a subgroup of  G. We 
then define a subduced representation of the RR, G(/GI), by G. as a representation in 
which elements associated only with G. are selected from ~(/G1). Let the symbol J G(/G 1) SG denote the subduced representation. Since the regular representation G(/G1) 
is transitive, the domain (A) contains only one orbit. However, the subduced represen- 
tation G(/G.)$G, acting on A is generally intransitive and hence can be reduced by the 

1 J 

following set of  equations, 

G(IG ) SGj = (IGI IIGjl)Gj(IH  j)) for j =  1,2,...,s, (3) 

where Hi(J) is an identity representation (appendix C). Equation (3) indicates that the 
domain A is partitioned into IGI/IG.I sub-orbits, co 1, co 2 . . . . .  co r, on each of which 
G:(/H, ( j ) ) j  , act. Since r = IGI/IG.I,j the I'ength of each orbit is equal to IGI If we take 
O 1 = 091, we can construct a system of imprimitive blocks, F =  {f2 r ~2 . . . .  i Or}, where 
t~21 = ffZ for 3 t ~ G (appendices D and E). 

As an illustration, let us examine a coset representation C3v(/C), which is shown 
explicitly in table 2. First, the corresponding regular representation C3v(/C1) is subduced 
with respect to C. Thus, the subduced representation C3v(/C1) $ C  : {(1) (2) (3) (4) (5) (6), 
(1 4) (2 6) (3 5)} creates a partition of the domain A = {1, 2, 3, 3, 5, 6} into three orbits, 
i.e. A 1 = {1, 4}, A 2 = {2, 6}, A 3 = {3, 5}. This can be done by using eqs. (1) and (2), but 
it is easy to obtain the result directly in the present case. If we select f21 = A~ = { 1, 4} 
and the stabilizer C,  the corresponding coset partition is C 3 = C  + C C  3 + C C 3  z. 
This equation affords a system of imprimitive blocks, F =  {f~, f~2, f~3}, where 
f~2 = C3f~1 = {2, 5} and ~3 = C3 z~ = {3, 6} (appendix E). The representation C3~(/C) 
can be considered to act on F. If we select orbits other than O~, other systems of 
imprimitive blocks are obtained. These results are illustrated in fig. 1, in which benzene 
is regarded as cyclohexa-l,3,5-triene with two different faces (i.e. so-called polarized 
cyclohexa-l,3,5-triene) which has C3~ symmetry. The relationship between G and Gj 
that appears in a CR (G/(Gj)) controls the mode of  substitution on the corresponding 
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C3v(/C 1 ) 
acts on 

C3v(/Cs) 
a c t s  on 

C3v(/C 3 ) 
a c t s  on  

Z~_ 2 

Q.Cl_I 

® 

C3v(lC3v) 
a c t s  on ~ _ O _ 1  

Fig. 1. Action of coset representations on blocks in a Cav(/C1) set. 

orbit, this mode is clarified by examining the action of G(/G,) on F = { f~l' ~-22 . . . . .  ~ )" 
Thus, the discussions shown in appendix F afford the following theorem concerned with 
chirality fittingness. 

THEOREM 2 

A coset representation G(/G) can act on: 

(a) a domain that takes only achiral ligands, if both G and G.< G contain improper 
J 

rotations (an achiral part); 
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(b) a domain that takes achiral as well as chiral ligands, if both G and G.< G contain 
J 

only proper rotations (a neutral part); and 
(c) a domain that takes achiral as well as chiral ligands, if G contains improper 

rotations and Gj contains only proper rotations (a chiral part). 

4. Subduced representations of a coset representation 

Let us consider a subduced representation (SR), G(/Gi)~.Gy, where G., < G and 
G. _< G. This SR is a permutation representation of G. and acts on each orbit A. 
(~ = 1, 2 . . . . .  ~ )  in an intransitive fashion. Hence, the J b i t  (Aia) is subdivided into the 
corresponding sub-orbits on the action of G(/Gi)~,G. on Aia in the same manner as 
discussed for theorem 1 (eqs. (1) and (2)). Thus, we ~nd up with: 

COROLLARY 1-1 

a(/oi) Saj  = Z Ni  2aj(/n  
k = l  

for i =  1 , 2 , . . . , s  and j =  1 , 2 , . . . , s ,  (4) 

where Hff ~ denotes a subgroup of a conjugacy class of G ;  G(/H~ ~) is the CR of G by 
Hff~; ~(0~ are non-negative integers; and vj is the number of conjugacy classes of 
subgroups. The multiplicities/3~ (0~ are calculated by the equation 

v~ ~ a(iJ)-(i~ = /-,k ,,,kt, l = 1 ,2 , . . . ,  19j, (5) 
k = l  

where v 1 is the mark of HIU)in G(/Gi).I.G j. 
Figure 2 shows a division and subdivision during the actions of G and 

G(/Gi).].G. The division of A by G affords orbits Aia (i = 1, 2 . . . . .  s and a = 1, 2 . . . . .  ~.) 
in the light of  eq. (1). The subdivision of Aic ~ into the corresponding sub-orbits is 
accomplished in terms of eq. (4). Table 3 summarizes the subductions of CRs for C3v. 

When we apply theorem 2 to G(/H~J~), we obtain the following corollary con- 
cerned with chirality fittingness. 

COROLLARY 2.1 

A coset representation G(/H~ ~) can act on: 

(a) a sub-orbit that takes only achiral ligands, if both Gj and H~< Gj contain 
improper rotations (an achiral pan); 

(b) a sub-orbit that takes achiral as well as chiral ligands, if both Gj and H~ ) < Gj 
contain only proper rotations (a neutral part); and 
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Z~ i °< 

A 

~ ic;<-- G(/Gi) 

~ G(/G i )+ Gj 

,..- /~ic~ a ---Gj(/H(~ )) 

kJ3b-- - 

'/~ k l3c c (j)) icY- Gj( /Hk 

Fig. 2. Orbits and sub-orbits in subduction of coset representation. 

Table 3 

The subduction of C3v(/G i) $ G 

/•  C 1 C C 3 C3v 

C3v(/C 1) 6Cl(/C 1) 3C(/C 1) 2C3(/C 1) C3v(/C 1) 
c3v(/c) 3c~(/c) c(/c,) + c(/c) c3(/c ~) c3~(/c) 

C3v(/C 3) 2C1(/C 1) C(/C 1) 2C3(/C 3) C3~(/C 3) 
c3,(IC3,) c~(IC~) c(Ic) c3(IC3) c3~(IC3,) 

(c) a sub-orbit that takes achiral as well as chiral ligands, if G. contains improper 
rotations and HkU) < G: contains only proper rotations (a choral part). 

In order to simplify notations, we use the following formal expression containing 
achiral, neutral, and chiral parts: 

Gj ( ]H (j)) = ,v(J)~ (a):r-1 0)'~ ..t. ,,, (J)~ (b)t'/r4 (J)'~ + ,v (J)G (c) t /H (j)'~ ,,¢akVj k'Jtk :--Ibbk'Jj  kt '"k 1 A, ck j l.t k /, (6) 
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where Z~ ) + Z~  > + Z~/=  1 and Za~ ), Zb([ ), and Z2~' are all non-negative integers. The 
sut~rscripts (a, b, and c) denote achiral, neutral, and chiral parts. The right-hand side of 
this equation indicates that only one of the three parts is effective. 

In the light of this notation, eq. (4) is replaced by eq. (7), which affords a 
decomposition into achiral, neutral, and chiral parts: 

v~ 
G (/Gi)  .~ Gj ~., .v(J)t~(iJ)G(a):tH(J)~ O) t~(/J)~(b)t'ItJr(J)~ 

= /t, ak t ':k j k l  k ] " - t - Z  ~ , b k t J k  " J j  k l H k  ] 
k = l  k = l  

vj 
'~-" , , . ( j)  /:/(/J),,'-, ( c ) / t u ( j ) ~ .  /~cktJk uj klH k ), f o r i = l , 2  . . . .  ,S + 

k = l  
and j =  1 ,2 , . . . , s .  (7) 

iot ict ia  The resulting sub-orbits are classified into three categories, i.e. Ak/~, A~N, and Ak/~, 
which are acted on by @a)(/H2:)), GC°)(/HO~k )and G~(c)(/H2J>), respectively. We call the 
sub-orbits G-  achiral, G -neutral, and G.-chiral sub-orbits, respectively. 

J . J 
The degree of G(s'f(/Hi:>) is d ,  = IG/IH2J)], in which $ denotes a, b, or c for 

achiral, neutral, or chiral, respectively. This is equal to the length of each subdivided 
• ic~ /32o)) orbit Ak/t~ (/3 = 1,. 2, . . . . .  We then assign a variable $ai, to the sub-orbit A~ s on 

which ~(s~!/H(k:) ) acts. Since the multiplicity of this orbit is o(ij) pk , a variable for the 
sub-orbit A~; is represented by 

Ci) R(U) ~()) R((i) ~(h R(q) 

t."4. ) t,".,, ) t?4. ) (8) 

It should 1~ noted that only one of the three terms is effective in the light of J'-ak'3c(J) %bk'(J) 
and Xc)~. 

By using the variables represented by eq. (8), we arrive at: 

DEFINITION 1 

(Unit subduced cycle index with chirality fittingness (USCI-CF).) 

r ~(J)/:[(0) ~(1)/~0) v(J) R(ij)7 

Z(G( /a i )  .1. aj; a,b,c) = ,=,I~ [~."di, ) ~.~'aj, ) ~,%, ) j .  (9) 

The sum of the powers in each of the parts of eq. (9) is also useful to enumerate 
organic structures. We define 

vi 

/~!f) = Z ~'(j)R(U)x,ak/-'* , (10) 
k = l  
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and 

A, bk/ak , (1 1) 
k = l  

v~ 

/,ok/-'k , (12) 
k=l 

which are the numbers of  sub-orbits of  the respective chiralities. These are summarized 
in the form of  

We call this term the o r b i t  i n d e x  for the SCR. The data of  table 3 provide tables 4 and 
5 for the C3v group by this procedure. 

Table 4 
Unit subduced cycle index for C3v(/G i )J~G 

i •  C 1 C C a C3v 

3 2 C3~(/C1) b 6 c 2 b3 c 6 
3 

C3v ( / C  ) b 1 a lc 2 b 3 a 3 
2 C3~(/C3) b 2 c 2 b 1 c 2 

C3v(/C3v) b I a 1 b I c I 

Table 5 

(]3~), /3(.. b) ]3~ )) for C3v(/Gi)$G. - - I j  • 

-/• 
C 1 C C 3 C3v 

C3v(/C~) (0,6,0) (0,0,3) (0,2,0) (0,0,1) 

C3v(/C) (0,3,0) (1,0,1) (0,1,0) (1,0,0) 

C3~(/C3) (0,2,0) (0,0,1) (0,2,0) (0,0,1) 

C3v(/C3~ ) (0,1,0) (1,0,0) (0,1,0) (1,0,0) 

5. Orbits of configuration and their symmetries 

Let A = {61, 6 2 . . . . .  51zxl } be a domain which consists of  IAI elements called 
p o s i t i o n s .  Let X = {X1, X 2 . . . . .  Xix i}  be a co-domain which contains IXI elements called 
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figures. In chemistry, the figures m a y b e  ligands or atoms. Suppose t ha t f i s  a function 
(called a configuration), i.e. f : A  --+ X. The mode of this mapping is restricted by the 
following weights: 

,%(x) (13) 

for i = 1, 2 . . . . .  s, a = 1, 2 . . . . .  oc i and r = 1, 2 . . . . .  IXI, which is assigned to each 
element X r of the co-domain X in agreement with the behavior of each orbit Aia. We 
then define a weight W(f )  for each function f 

D E F I N I T I O N  2 

The weight of a function is represented by 

s cti 

W ( f )  = H I-I I-I wm~(¢~)) 
i =  l a = O  & e  A i a  

= f i  I-I I I-I wia(f03)) I-I wia(f((3)) I-I wiaOC(~))l • (14) 
J 

The products in the parentheses of eq. (14) are monomials of  total powers of d ~ ( a )  ")kr"i) ' 

d.~.(b), and d, ~!c) respectively. j~ ij j0: q 
A set of  all functions ( f :  A --~ X) is defined as 

Suppose that a group G acts on domain A = {~5l, 32 . . . . .  4,xl} in the form of the 
corresponding permutation representation Pc, on A and that the group G acts simul- 
taneously on a co-domain X = {X1, X 2 . . . . .  Xixi} via a permutation group Q-a on x .  For 
Pg ~ PG and Q_g e Q_~, a binary relation between fr (~ F) and fe (~ F) is defined as 

Qgfr(~ = r e ( P ( 8 ) )  for V ~ A, (15) 

which holds for q g ~ G. This binary relation is an equivalence relation. Hence, this 
affords a partition of the set (F)  into equivalence classes. This type of action was 
discussed in detail by Hiisselbarth [3]. In order to simplify our discussion, Q (X)  is an 

g r 
operation that keeps X r invariant for a proper rotation g ~ G, but gives its anupode (Xr #) 
for an improper rotation g ~ G. 

Let A, : f  ---)f  be a mapping corresponding to g ~ G and let A G be a set 
containing ~1 k.. Then, A c is proved to be a permutation representation of G 

g 
(appendix G). Hence, theorem 1 (eqs. (1) and (2)) also holds for this case. 
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THEOREM 3 

Suppose that a group G acts on F by the simultaneous actions of G on A and X. 
The action constructs a permutation representation A a on F. The multiplicity of each 
transitive coset representation G(/Gi) in A 6 is determined by 

$ 

Ac, = ~ BiG (/Gi),  (16) 
i = 1  

wherein B.'s are non-negative integers. The multiplicities B. are obtained by solving the 
following equations: 

s 

p j =  ~ B i m i j ,  f o r j =  1 , 2 , . . . , s ,  (17) 
i = 1  

where p. is the mark of G. in A_. 
] J o 

Each orbit corresponding to a transitive G(/Gi) contains functions (configura- 
tions) of symmetry G i. Hence, B i is the number of different configurations of symmetry 
G . .  

l 
The mark p~ is the number of fixed functions (configurations) of  F with respect 

to G/  Suppose that an appropriate configuration f o~ ~ F is fixed to all the elements 
g ~ G / T h i s  requires 

Qgf(J)(b') =f(J)(P(b')) ,  for V fie A and V g ~ Gj. (18) 

Let us now go back to the division into orbits and the further subdivision into 
sub-orbits shown in fig. 2. Then, in order f o r f  (j) (~ F )  to be constant with respect to 
eq. (18), all the positions of each sub-orbit have to take the same figure (or ligand) of  
suitable chirality. If the sub-orbit is an achiral part, there are IX.(a)l ways of substitution 

t a  

ic~ where IX!a)l is the number of non-zero ~c~(Xr)with achiral for each sub-orbit Ak/3a, ,~ 
,c~ Since the number of sub-orbits is "0 ' X r for each sub-orbit A~a. R (a) the number of fixed 

configurations for chiral parts contained in Aia is represented by 

H [ X(a)i<~ /3!~>, (19) 
a~=0 

w h e r e  = 1. 
~ v  

Similarly, the number of fixed configurations for a neutral part is obtained as 
follows: 

H Ix}X>lme', (20) 
6 = 0  
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where IS~/o)l = 1 and 

Ix'(b)l,c~ = the number of non-zero w/,~(X) for each sub-orbit A~ b = IXia j. 

For counting the number of fixed configurations in a chiral part, a saturation of 
each orbit with chiral ligands is accomplished in either of the following two ways, due 
to its chirality fittingness: 

. . .  C # C # . .  C # C # C C C C or  . 

C # C # C # C # iC C C C 

Thus, we obtain 

I ]  X [;)/~'~', (21 ) 
a=O 

where IX}o)l = 1 and 

Ix Y21 = the number of non-zero W.a(Xr) with achiral X plus twice the number of 
non-zero w/a(Xr) with chiral X (one of the antipodes) for each sub-orbit 

i a  Ak~c 

= the number of non-zero w.a(Xr) with achiral X r and chiral X r 

=IX. I. 

The product of eqs. (19), (20) and (21) provides the number of fixed configura- 
tions for each orbit Aic c A further multiplication of the products over all s is equal to 
pj. Hence, the following corollary is derived from eq. (17): 

C O R O L L A R Y 3 - 1  

X/;)I Nj I X I : Z Bi mij ,  g21"" Ix g2 
i=1 i=1 

j =  1 , 2 , . . . , s .  (22) 

Since IX~ )l,,x = IX!c)l,c~ = IXial' a simpler expression can be derived: 

Ixi l = ~ Bimi j ,  j =  1,2 . . . .  , s .  (23) 
i=1 i=1 

Example 1. In appendix B, we have shown that the vertices { 1, 2, 3, 4 } of  a trigonal 
pyramid (C3v) are partitioned into two orbits, i.e. A 1 = {4} on which C3~(/C3) acts and 
A z = { 1, 2, 3} on which C3~(/C) acts (fig. 3). 
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4 

"~" 4" 

A 1 A 2 

C3v(/C3v ) C3v(/Cs ) 
Fig. 3. Orbits of a lxigonal pyramid. 

Suppose that the orbit A 1 takes A, B, C and C # and that the orbit A 2 can take A, C 
and C #, where C and C # are antipodes to each other. For this purpose, we choose 
X = {A, B, C, C # } as a co-domain and determine the following weights: 

wl(A) = A, wl(B) = B, wl(C) = C, wl(C #) = C # for A r and 

w2(A ) = A, w2(B ) = 0, w2(C)= C, w2(C #) = C # for A 2. 

In terms of these weights, the number of allowed ligands are obtained as follows: 

IX~)I=2,  [X~l)l=4, and [X~)I=4 for A r and 

IX~2)I=l, IX~2)1=3, and IX(2)1=3 for A 2. 

From table 5, we pick up the rows of C3v(/C3v) and C3v(/C). For example, (0,1,0) and 
(0,3,0) for the C x column afford Pc, = 2 °414°1°333° = 108 by using the left-hand side 
of eq. (22). Similarly, we obtain 

Pcs =211131 = 6 ,  Pc3 = 4 1 3 1 =  12 and Pc3v =2111 = 2 .  

We then find eq. (22) for this case: 

(108 6 12 2) = (Bc~ Bcs Bc3 Bc3,) 3 1 0 
0 2  " 
1 1 
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A B 

A A A A 

C A B --" 

A A C C C C 

C C :~ 

C C C C _. 

A A B 

A C A C A A 

C ~ B 

A A C C C' A 

C ~ C 

. C # 

B C C ~ 

C 3  
. d n t i p o d e  

B 

C 

Fig. 4. Isomers based on a trigonal pyramid. 

CS 

C 1  
*e 

ant i pode 

This provides 

Bc~ = 14, Bcs = 4, Bc3 = 5, and Bc3, = 2. 

Figure 4 lists the isomers derived by the enumeration of example 1. 
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. Enumeration of  configurations with a given symmetry as well as a given 
weight. The most  general case which takes the OMV into consideration 

In this section, we enumerate the number of configurations with a given sym- 
metry as well as a given weight on the basis of a given skeleton. We start from: 

LEMMA 1 

Let f~,: A ---) X and fe:  A ~ X be equivalent. Then 

W(f~,) = W( f e ) ,  (24) 

where the weights are given by eq. (14) (appendix H). 
Let F (°) be a set of functions ( f :  A --) X), all of which have the same weight 

Wo(f):  

F ( O) = { f~ o), f(2 o) . . . . .  f ¢  o), . . . ,f(eo), . . . , f (  o) } , (25) 

where V =  IF(°~I. Then, we can obtain a permutation: 

. . . . . .  , f o g-1 

¢(o) • , . ,  , . . . ,  
(26) 

Let the symbol A~ ) denote the set of A, (°~ for g e G. It can be proven that A~ °~ is a 
permutation representation of G (appendfx I) This result allows us to apply theorem 1 
to ~xâ (°)" q~ereby, we end up with: 

THEOREM 4 

and 

A~ °) = ~ BoiG (/Gi), (27) 
i=1 

3 

Poj = ~., Boi  m i j ,  j = 1 , 2 , . . . , s .  (28) 
i=1 

The symbol (Boi), which originally denotes the multiplicity of a transitive coset repre- 
sentation (G(/Gi)) ,  also indicates the number of isomeric configurations with G i sym-  
metry as well as a weight W o. The  values of the Boi can be calculated with eq. (28), if 
the marks/9o) are estimated. 

By using a fixed-point (FP) matrix (poj), an isomer-counting matrix (Boi), and a 
mark table (mij), eq. (28) can be altematively expressed as follows: 
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Pl l  ... Pl j  . . .  P ls  

/321 -.. P2j .. .  P2s 

, ° .  

Pol . . .  Po~ ...  Pos 

o o °  

91011 . . .  plOIj , , . P l O I s  

(Poj ) 

( B l l  .- .  Bls 
B21 . . .  B2s 

oo.  

. o .  

BlOll ...BIo[s 

(Boi) 

; 1 1  - - .  m l s ]  
22  m2s . 

oo ,  

\msl ... mss j 

(mi j )  

(29) 

The next task is the evaluation of Poj" Let us now define a subduced cycle index 
with chirality fittingness using eq. (9). 

D E F I N I T I O N  3 

A subduced cycle index with chirality fittingness (SCI-CF) is defined as 

l ~ I  a i  Z ( G j  ; a, b, c) = I-I Z (G  ( /G i )  $ Gj  ; a, b, c) 
i =  1 c~=0 

a i  v~ f +  - ,7  (j) fl(0) - _ -,,O3/¢(03 _ _,v(ONiY) - 

= 11 %, , %, 
i = 1  c~=0 

(30) 

for j =  1,2 . . . . .  s. 

The SCI-CF is the product of USCI-CFs (definition 1) over all i and a. Now we arrive 
at lemma 2 (appendix J). 

L E M M A  2 

The generating function for marks Poj with a weight W o is given by the following 
figure inventories: 

~..POj Wo = Z ( G j  ; a, b, c), (31 ) 
o 

wherein the right-hand side is substituted by 

IXI a) 
/7(  O~ ) 

= L Wia ~d)k 
r= 1 

(32) 

IXI 
bd) a) 2 Wio~(Xr) djk , ( 3 3 )  

k ~ "  
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and 

r--~l a) + 2 ~ wia wiot , . (a)  = W i  a '~ dj k 
r=l 

(34) 

Lemma 2 gives a generating function for calculating marks Poj' which are in turn 
introduced into eq. (28) or (29) to yield the number (Boi) of configurations of symmetry 
G i. It should be noted that an SCI of definition 2 can be practically obtained by an 
appropriate multiplication of such USCIs as collected in table 6. The following example 
illustrates these procedures. 

Example 2. The enumeration of isomers based on a trigonal bipyramid (example 1) is 
re-examined by the method of this section. We pick up the rows of C3~(/C3, ,) and 
C3~(/C) from table 4. Generating functions are obtained in terms of lemma 2, i.e. 

(bl)(1)(b~) (2) = (A + B + C + C #) (A + C + C#) 3, for C 1, 

(al)(1)(alc2)(2) = (A + B)A(A + 2CC#), forC, 

(bl)(1)(b3)(2) = (A + B + C + C#)(A3+ C 3 + C#3), for C 3, and 

(bl)(1)(a3)(2) = ( A  + B ) A  3, for C3.  

The terms with superscript (1) are concemed with the row of  C3v(/f3v). The other terms, 
with superscript (2), stem from the row of C3(/C). These generating functions are 
expanded and the coefficients of two terms for each pair of mirror images are collected 
to give a matrix (p,~.). The number of isomers are obtained by multiplication of the 
matrix (p,~.) with ~ e  inverse of the table of marks derived from table 1 (fig. 5). 
Obviously, the sum of the values for each subgroup (with respect to each column) is 
equal to that obtained in example 1. We have already illustrated the isomers in fig. 4. 

A slight modification of lemma 2 gives a method for counting isomers in the case 
that forbids chiral ligands (appendix K). This is illustrated by the following example. 

Example 3. The adamantane skeleton (2) of T d symmetry has ten positions, which are 
divided into two orbits (six methylene and four methine positions) in accord with 

erd = Td(/C2v ) + Td(/C3v). 

This reduction allows us to use Td(/C2v) and Ta(/C3v) rows of a table of USCIs (table 
6). We select X = {C, N, O} as a co-domain and determine weights: 

w l ( C ) = x ,  w l ( N ) = y ,  w l ( O ) = z ,  fo rA 1, and 

wz(C) = x, wz(N) = y, wz(O) = 0, for A z, 
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A 4 

A3B 

A3C + A3C # 

A2BC + A2BC # 

A2C 2 + A2C #2 

A2CC # 

ABC 2 + ABC #2 

ABCC # 

AC 3 + AC #3 

AC2C # + ACC #2 

BC 3 + BC #3 

BC2C # + BCC #2 

C 4 + C #4 

C3C # + CC #3 

C2C #2 

C 1 C s C 3 C3v 

1 I I i 

1 I i i 

8 0 2 O 

6 O 0 0 

12 0 0 O 

12 2 0 0 

6 o o o 

6 2 0 o 

8 o 2 0 

2 4 0 0 0 

2 O 2 0 

6 0 O 0 

2 O 2 0 

8 0 2 0 

6 0 0 0 

i/2 I o 

1/6 o I/2 

1/2 -i -I/2 
/ 

(pej). t h e  i n v e r s e  of '  

tile table o f  m a r k s  

Fig .  5. I s o m e r  counting based on  a trigonal 
pyramid under the  O M V  restriction. 

C I C s C 3 C3v 
f 

0 0 0 1 

0 O 0 1 

1 0 1 0 

1 0 0 0 

2 0 0 0 

I 2 0 0 

1 0 0 0 

O 2 0 0 

1 0 1 o 

4 0 0 0 

0 0 l 0 

i 0 0 0 

0 0 1 0 

1 0 1 0 

1 0 0 0 

l]Ufiib(2l*,'3 o F  Iso[r~ePs 

in accordance with the OMV restriction of  the skeleton. We then find figure inventories, 

s °) = xT+ y ~ +  z ~, for A 1 and 

s (2) = x T + y ~, for A 2. 
T 

L e m m a  4 (apl~ndix K) gives the fol lowing generating functions for the Poj'S: 

(S16)(1)($4) (2) ---- (X "Jr y -t- Z)6(X "t- y )4 ,  for C r 

2 2 (1) 2(2) z)2(X 2 + y 2  22 (S 1 $2) ($2) = (X -t- y -t- + Z2)2(X2 + y ) , for C 2, 

(s 12sz O)(s lz sz )(z) = (x + y + z)2(~ + / + z2)a(x + y)2(x2 + yZ), for C ,  

(s~)O)(s 1 s3)(2) = (x 3 + y3 + z3)2(x + y)(x 3 + y3), for C 3, 

($2S4)(1)($4)(2) = (X 2 -I- # 4" Z2)(X 4 "t- y4  + Z4)(X4 -I- y4) ,  for $4,  
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($23)(1)($4)(2) ----- (X 2 -t- y2 _1_ Z2)3(X 4 + y4), 

($2S4)(1)($2) (2) : (X  "l- y + z)Z(x 4 + y4 + Z4)(X.2 + y2)2, 

($2)(1)(S1 $3)(2) = (X3 + y3 + z3)2(X + y)(x 3 + y3), 

($2S4)(1)($4)(2) = (X 2 + y2 + Z2)(X 4 + y4 + Z4)(X 4 + y4), 

($6)(1)($4)(2) : (X 6 -I- y6 + Z6)(X 4 + y4), 

($6)(1)($4)(2) : (X 6 .}. y6 _1.. Z6)(X 4 q_ y4), 

for D 2, 

for Czv, 

for C3v, 

for Dzd, 

for T, 

for T d, 

in which the superscripts (1) and (2) correspond to the Ta(/C2v) and Td(/C3v ) rows of 
table 6. 

Table 6 

Unit subduced cycle indices for T d 

\ ' / ~  C 1 C 2 C C 3 S 4 D 2 C2v C3v D2d T T d 

Td( /Cl )  S124 $212 S212 $38 $46 $46 $46 $64 $83 S122 $24 

Td(/C2) Sl12 s14s24 $26 $34 $22S42 $26 $22S42 $62 $43 $62 S12 

Td(/C ) sl12 s26 s12s25 $34 $43 $43 $22s42 $32s 6 $4s 8 s12 s12 

Td(/C 3) s18 $24 $24 s12s32 $42 $42 $42 $2S 6 s 8 $42 s 8 

Td(/S4) s16 s12s22 $23 $23 s12s 4 $23 $2s 4 s 6 $2s 4 s 6 s 6 

Td(/O2) S16 S16 $23 $32 $23 S16 $23 S 6 $23 $32 s 6 

Td(/C2v) s16 s12s22 s12s22 $32 $2s 4 $23 si2s 4 $32 $2s 4 s 6 s 6 

Td(/C3v) sl n $22 S12S2 S1S 3 S 4 S 4 $22 S1S 3 S 4 S 4 S 4 

rd(/O2d) s13 sx 3 sis 2 s3 sis2 s13 sis 2 s3 sis2 s3 s3 

Td(/T) s12 Sl 2 s 2 s12 s 2 s12 s 2 s 2 s 2 sl 2 s 2 

Td(/T d) s 1 s 1 s 1 s 1 s 1 s 1 s 1 s 1 s 1 s 1 s 1 

The expansion of these generating functions gives the values of p,., which 
construct an FP matrix. The FP matrix is multiplied by the inverse of the ma~kOJtable for 
T d (table 7) to yield Aoi. The values thus obtained are found in table 8, which shows the 
number of isomers with W 0 = x e ~y P2zP3 (the row) and G, (the column). 

As an illustration of the result, fig. 6 collects CsN 2 a~ well as C802 isomers based 
on the adamantane skeleton. The coefficient of xSy 2 reveals that there are five isomers 
with CgN 2. That of xSz 2 is the number of C802 isomers. This difference comes from the 
OMV restriction, by which an oxygen is forbidden to occupy the bridgehead positions 
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Table 8 

Enumeration of isomers based on an adamantane skeleton (2) 

Pl P2 P3 C1 C2 C C 3 S 4 D 2 C2v C3v D2d T T d 
(C) (N) (0) 

10 
9 
9 
8 
8 
8 
7 
7 

0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 1 1 0 0 0 
0 1 0 0 0 0 0 0 1 0 0 0 0 
2 0 0 0 3 0 0 0 1 0 1 0 0 
1 1 1 0 2 0 0 0 1 0 0 0 0 
0 2 0 0 1 0 0 0 0 0 1 0 0 
3 0 2 1 3 0 0 0 2 3 0 0 0 
2 1 6 1 4 0 0 0 2 0 0 0 0 

7 1 2 2 1 5 0 0 0 0 0 0 0 0 
7 0 3 0 1 0 0 0 0 0 2 0 0 0 
6 4 0 4 1 7 0 0 0 1 2 1 0 1 
6 3 1 16 1 8 0 0 0 2 0 0 0 0 
6 2 2 12 1 9 0 0 1 1 0 0 0 0 
6 1 3 3 1 4 0 0 0 0 2 0 0 0 
6 0 4 0 0 1 0 0 0 0" 0 1 0 0 
5 5 0 4 2 10 0 0 0 2 0 0 0 0 
5 4 1 25 2 10 0 0 0 2 0 0 0 0 
5 3 2 26 3 15 0 0 0 0 0 0 0 0 
5 2 3 11 3 10 0 0 0 0 0 0 0 0 
5 1 4 2 3 10 0 0 0 1 0 0 0 0 
5 0 5 0 0 0 0 0 0 1 0 0 0 0 
4 6 0 4 1 7 0 0 0 1 2 1 0 1 
4 5 1 25 2 10 0 0 0 2 0 0 0 0 
4 4 2 34 3 16 0 0 0 0 0 2 0 0 
4 3 3 22 3 10 0 0 0 0 4 0 0 0 
4 2 4 6 1 5 0 0 0 1 0 1 0 0 
4 1 5 0 0 2 0 0 0 1 0 0 0 0 
4 0 6 0 0 0 0 0 0 0 0 0 0 1 
3 7 0 2 1 3 0 0 0 2 3 0 0 0 
3 6 1 16 1 8 0 0 0 2 0 0 0 0 
3 5 2 26 3 15 0 0 0 0 0 0 0 0 
3 4 3 22 3 10 0 0 0 0 4 0 0 0 
3 3 4 9 0 6 0 0 0 2 0 0 0 0 
3 2 5 1 0 2 0 0 0 2 0 0 0 0 
3 1 6 0 0 0 0 0 0 0 1 0 0 0 
2 8 0 0 0 3 0 0 0 1 0 1 0 0 
2 7 1 6 1 4 0 0 0 2 0 0 0 0 
2 6 2 12 1 9 0 0 1 1 0 0 0 0 
2 5 3 11 3 10 0 0 0 0 0 0 0 0 
2 4 4 6 1 5 0 0 0 1 0 1 0 0 
2 3 5 1 0 2 0 0 0 2 0 0 0 0 
2 2 6 0 0 0 0 0 0 1 0 0 0 0 



1 4 2  S. Fujita, Subduction of coset representations 

Table 8 (continued) 

Enumeration of isomers based on an adamantane skeleton (2) 

Pl P2 P3 e l  C2 C, C 3 S 4 0 2 C2v C3v O2d T T d 
(C) (]'4) (0) 

1 9 0 0 0 0 0 0 0 1 1 0 0 0 
1 8 1 1 0 2 0 0 0 1 0 0 0 0 
1 7 2 2 1 5 0 0 0 0 0 0 0 0 
1 6 3 3 1 4 0 0 0 0 2 0 0 0 
1 5 4 2 0 3 0 0 0 1 0 0 0 0 
1 4 5 0 0 2 0 0 0 1 0 0 0 0 
1 3 6 0 0 0 0 0 0 0 1 0 0 0 
0 10 0 0 0 0 0 0 0 0 0 0 0 1 
0 9 1 0 0 0 0 0 0 1 0 0 0 0 
0 8 2 0 0 1 0 0 0 0 0 1 0 0 
0 7 3 0 1 0 0 0 0 0 2 0 0 0 
0 6 4 0 0 1 0 0 0 0 0 1 0 0 
0 5 5 0 0 0 0 0 0 1 0 0 0 0 
0 4 6 0 0 0 0 0 0 0 0 0 0 1 

C8N 2 

C802 

N 

(C2v) 
N-..v~N 

L_ ~> (D2d) 

(Cs) 

0 

-0 

(Cs) 

( D2 d) Fig. 6. Isomers based on an adamantane skeleton. 
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of the skeleton. Figure 6 also shows that the five CsN 2 isomers are classified into three 
C s isomers, one Czv isomer and one D~  isomer. The two C80 z isomers are divided into 
one C and one D2d isomer. These numbers appear as the values collected in table 8. 

7. Special cases 

This section deals with the derivation of  a special case in which the OMV is not 
considered. For this purpose, all weights given by eq. (13) are redefined as follows: 

Wiot(Xr) = Xr,  (35) 

for i = 1, 2 . . . . .  s; a = 1, 2 . . . . .  ~.; and r = 1, 2 . . . . .  IXI. Thereby, the weight of  a 
function (configuration) is found to be 

W ( f )  = r I  w m ( f ( 8 ) ) .  (36) 
SeA 

Suppose that Ix}a)l : IX(a)l and Ixlb)l = IX}C21 = IXI. Then, we can apply corollary 3-1 to 
the special case. Hence, we end up with: 

COROLLARY3-2 

S 

[IX (~)1 ~=' a'#!]'l EIXI2f=' a, (/3[~'+/3!y')] = ,~, B, mij,  
i=1 

j =  1 , 2 , . . . , s .  (37) 

This corollary is more informative than H~isselbarth's counterpart [3], since the present 
result contains the number of  orbits in the explicit powers that are derived from a novel 
treatment of  subduced representations. 

The definitions of this section indicate that the variables 

adj(a) h(a) :(a) k , ~'dik ' and ~djk 

are independent of  their orbits. Thus, we can omit the superscript (a),  i.e. 

"*djk'°(Ct) = adjk , Ud#h(a) = bd# , and "d#"(a) = Cd#. (38) 

By using these variables, we transform the right-hand side of  definition 3 into a simpler 
form that is suitable for the special case. Hence, we find a new definition for a subduced 
cycle index: 
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D E F I N I T I O N  4 

A subduced cycle index (SCI) without consideration of OMVs is defined as 

uj [- n (J )  n (J )  n ( J ) ' l  
• = ) " I b k  Z P ( G j ' a ~ b ' c )  k=lHk(adP')"lak(bdj' (Cd#)"tckJ ' (39) 

where the powers of the respective terms are represented by 

q(j) ~ ~,(j) fl~ij), (40) ak = (']'i A~ak 
i=1  

and 

s 

q(2) ~., ai .~(i) fl(kq), (41) bk ~- /bbk 
i=l 

q(j) ~, ,~,. ,,,(j) n(ij) (42) ck = t.~/t, ck k"k " 
i=1  

Using the subduced cycle index, we transform lemma 2 into lemma 3 that is suitable 
for the special case of this section (see appendix J). 

L E M M A  3 

If G. < G acts on A and no OMVs are considered, a generating function for marks l 
Poj with a weight 14 o is as follows: 

where 

and 

Poj 141o = Z'(Gj ;a, b, c), (43) 
0 

IXI 

°-aik = Z (X}a)) djk, (44) 
r= 1 

IX[ IXl IXI IXl 

bd;, = 2 (X,) djk = }", (Xr('~)) d# + Z (Xr(C)) d;' + Z (X}C#)) di* , (45) 
r = l  r = l  r = l  r = l  

IXI IXI 
Cdjk = Z ( x ( a ) )  djt + 2 Z (c) (c#) djk/2 (Xr Xr ) • (46) 

r= 1 r= 1 

Lemma 3 yields a set of marks p,~. that is necessary to enumerate isomers with a ~j 
subsymmetry G. < G and a weight 0 based on a parent skeleton of  symmetry G. The ) 
values of Po are introduced into theorem 4 (eq. (27) or (28)) in order to obtain the 
number (B0~l of isomers of symmetry G i. A more  special case that enumerates isomers 
only with achiral ligands and without consideration of OMVs is similarly manipulated 



S. Fujita, Subduction of coset representations 145 

(appendix L). This case will be reported elsewhere, in particular for the purpose of  
clarifying the relationship between the present result and P61ya's theorem. 

8. Conclusions 

Enumerations with and without the effect of  obligatory minimum valency (OMV) 
have been discussed. Each position of  a given skeleton has the OMV that determines 
the mode of  substitution at its position. The OMV can be treated with the idea that 
different weights are assigned to different orbits of positions. This yields several new 
concepts such as chirality fittingness and a subduced cycle index with three parts. 

Appendix A 

Coset representations as transitive ones. Coset representations (CRs) are a kind 
of permutation representations that play an important role in the present enumeration. 
Let G be a finite group. Let H be a subgroup of  G. The set of (left) cosets of  H in G 
provide a partition of G. If we adopt a set of {gl' g2 . . . . .  gin} as a transversal (i.e. a 
system of representatives), we obtain the partition: 

G= Hg I + Hg 2 + . . . + Hg  m, (A.1) 

where gl = 1 (identity) and gi ~ G. Let us next consider the set of  the cosets: 

{Hg 1, Hg 2 . . . . .  Hgm}. (A.2) 

The coset representation (CR) of G by H that is denoted as G(/H) is a set of permuta- 
tions of degree m: 

G ( / H ) g  = ( H g l ,  Hg2 , . . . ,  Hgm ~ (A.3) 
~Hglg ,  H g z g  , . . . ,  H g m g ) '  

for any g ~ G. The degree of G/(]H) is m = IGI/IHI. Obviously, the coset representation 
G(/H) is transitive and, in other words, has one orbit. When H and H '  are conjugate 
subgroups of G, the corresponding coset representations G(/H) and G( /H ' )  are equiva- 
lent to each other. 

Representatives of  conjugate groups. Suppose that the number of  representatives 
of conjugate subgroups in a finite group G is s, where an appropriate representative is 
selected from a set of conjugate subgroups. We select a system of representatives, 

SSG = {G 1, G 2 . . . . .  G},  (A.4) 

in an ascending order of  their orders, i.e. 
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IGll ~ IG21 ~ . . . N IGsl, 

where G 1 = I (identity) and G = G. We call this sytem a system of  subgroups (SSG). 
The set of  corresponding CRs, G(/G.) (i = 1, 2 . . . . .  s), is the complete set of  different 
transitive representations of  G. Obviously, G(/GI) is a regular representation and G(/G) 
is an identity group. 

A table of marks. A mark of  H (<G) in a permutation representation of  G is 
defined as the number  of  fixed points of  a G-set on the action of  the subgroup H.  
Suppose that G i (i = l ,  2 . . . . .  s) is an SSG of  a finite group G, as defined above. Let  
G(/G i) be a coset representation. The mark of  G. in G(/Gi) is a constant for each i and 
j and is denoted as m_. The table of  marks m.. fdr all i and j will be used in theorem 1. 

zj q 

An orbit subject to a coset representation. The feature of  G(/G i) can be under- 
stood by the following explanation. The coset partition of  G by G i yields the correspond- 
ing transversal {gl, g2 . . . . .  g ,  . . . . .  gin}' where m = IGI/IG/I. Let G i be a stabilizer of  
3 51(i) of  A. This means that G i holds I~1(i) tO be constant. We can consider that gz(~ G) 
converts 5~ (') into 5 (i).~ Hence, Gig ~ corresponds to 5 °)~ in a one-to-one fashion. As a 
result, G(/Gi) that originally acts on {Gig l~ = 1, 2 . . . . .  m} can be considered to act 
also on Aia = .Is(i)Iz, = 1 ,2  . . . .  , m}, where a denotes one of  such equivalent orbits. 

Appendix B 

Orbits in a trigonalpyramid (C3v). Let us consider the set o f  vertices of  a tfigonal 
pyramid to be A = {1, 2, 3 ,4},  whose apex is vertex 4. The C3v group contains six 
elements, i.e. 

G = C3v = {I, C 3, C32, %0)' %(2)' %(3))" 

By counting fixed points for the respective subgroups, we can obtain marks as follows: 

/-/c~ = 4, /-tc, = 2, //ca = 1, and ]/c3v = 1. 

If  we introduce these marks into eq. (2), we find L6o0 l 
( 4 2 1 1 ) = ( a c l  ac~ ac3 ac3 , )  3 1 0 

2 0 2  ' 
1 1 1 

which in rum yields 

a c l  = 0 ,  ac ,  = 1, ac3 = 0 ,  and 0~c~v = 1. 
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Hence, the permutation representation has been reduced to the form of 

Pc3, = C3,, (IC~ ) + C3 v (IC3,,). 
The result is in agreement with two orbits, A~ = {4} and A z = {1, 2, 3}, in which Aa is 
acted on by C3~(/C3~) and A 2 by C3~(/C), as shown in fig. 3. The concrete forms of the 
CRs have been collected in table 2. 

Appendix C 

Proofofeq. (3). Since the subduced representation G(IG1)$ Gj is a permutation 
representation, eqs. (1) and (2) hold for this case. Hence, 

vj 
G(IG~) SGj = Z ~U)Gj(IH~)), (C.1) 

k = l  

where H 03 denote a subgroup of a conjugacy class of G,; G,(IH~ ~) is the CR of G~ 
by H~); ~lj) are non-negative integers; and v. is the number of conjugacy classes 
of subgroups. The multiplicities/3~ l j) are obtair~ed by 

vt = ~ t~OJ),.,,CJ) l= 1,2, oj (C.2) 
I " k  H ~ k l  , ""  " ,  , 

k = l  

where v l is the mark of Ht(/)in G(/Gt)$G.. In the case of G(/G1)$G, the mark of Hk(i) 
in G(/G1)$G is obtained as follows: s 

v I=IGIIIGjl and v 2= v 3 = . . . =  vj=O. 

These values, as well as m~ ) = 0 (l > k), provide 

/3[U~:l~l/l~jl and /32 ( ' j ) : /3~ l j )= . . .  :/3(vlJ) =0 .  

Hence, eq. (C.1) is converted into 

G(IG~) SG = (IGIIIGI)Gj(IH(~S)), (c.3) 

where H(lJ) is an identity group. 

Appendix D 

A system ofimprimitive blocks. Let Pc be a transitive permutation representation 
on A by the action of a finite group G on A. If a subset £2 ( 4 0 )  of  A satisfies the 
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condition of P ~ = Y2 or P ~ n ~ = Q for V P • Pa' the subset ~ is defined as an 
g g 

imprimitive blf)ck of the group Pc, (or of the group G) [11]. Suppose that the group PG 
on A is transitive, that the subset f~ of A is an imprimitive block, and that the group 
G(n) is a stabilizer for the subset ~ .  Let H denote the permutation representation 
corresponding to G(o ), i.e. 

PG(n> = H. 

The set of  (left) cosets of H in PG provide a partition of PG" That is 

PG = Htl + Ht2 + " " " + Htr' (D.1) 

where t~ = I (identity) and t~ • Pc for k = 1, 2 . . . . .  r. This equation gives a system of 
primitive blocks F = {f21, ~"~2 . . . . .  ~"2r} , where f2~ = f2 and t~f2 = f2/c 

LEMMA D.1 

Let F = {f2x, ~"~2 . . . .  ~ "~ ' }  be a system of imprimitive blocks of a transitive 
representation Pa by the action of G on A. Since P f2 • F (~ = 1 2, .r) for P • Pc 

g "r ' " "  g 

(Vg • G), a permutation represented by 

= ( f21, , . . . ,  ) 

can be defined. The G # = {G#1Vg • G} is a permutation representation which is 
g 

equivalent to the coset representation of G by the stabilizer G(n), i.e. 

G # = G ( / G ( n ) ) .  

Appendix E 

A system of  tmprimitive blocks with respect to a regular representation. A 
stabilizer of each sub-orbit (co 1, co . . . . . .  co ) is G(/G.)SG. ,  since this is faithful to G .  

z r 1 j . 
The sub-orbit wl (=f2~) thereby is an imprimitive block in A. Equauon (D.1) holds for 
this case, if we take Pa = G(/G1) and H = G(/G.),I,G.. Hence, this fact gives a system 

1 J 

of imprimitive blocks F = {[2~, ~'-~2 . . . . .  ~'~r} , where each representative t is selected 
from Pc to yield tf21 = D ( z =  1, 2 . . . . .  r) as shown in appendix D. It should be noted 
that the set of orbits o~ are not always identical to F except ~ v  In terms of lemma D. 1, 
let G # be a permutation group on the system F. Lemma D. 1 indicates G # = G(/H).  On 
the other hand, P~(/H) = G(/G.), because P~ and H are isomorphic to G and G ,  
respectively. Hence, G# = As a result~the coset representation G(/G.), whic~a 
originally acts on the corresponding set of cosets (appendix A), can be considered to act 
on F = ( f21, ~2 . . . . .  f2r }" 
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Appendix F 

Proof of theorem 2. The object of this appendix is to examine the mode of action 
of G(/G,) on F = {f2,, ~q . . . . . .  ~r} from a chemical point of view. We discuss this in 
the foll6wing three c~es~ 

(a) G is a group having improper rotations and Gj is a subgroup also having 
improper rotations. 

(b) Both G and G. _< G are groups of proper rotations. 
] 

(c) G is a group having improper rotations and Gj is a subgroup of proper 
rotations. 

The subgroup G i is a stabilizer of the block f~l = ¢ol, as shown in the above 
discussions. Hence, the homomorphic G(/G.),I,G. is a subgroup that stabilizes Dx. In 
other words, the subgroup G,  or equivale~atly ~ ( / G )  S G ,  keeps f2~ constant. 

Case (a). If we assign a chiral ligand C to f2a, the subgroup G converts this into 
the antipode C °, since G. contains improper rotations in case (a). In ~rder for f2x to be 
a constant, we obtain th~ relationship C = C °, which indicates that C (and C #) should 
be achiral. In case (a), therefore, G(/G) acts on the domain that takes only achiral 
ligands. 

Case (b). This is more straightforward. Since the group G(/G) is not concerned 
with improper rotations, any ligands can be available. 

Case (c). Let Pc, be G and let H be G.in eq. (D.1). Since H contains only proper J 
rotations, eq. (D.1) indicates that the transversal {t x, t z . . . . .  t }  consists of r/2 improper 
rotations and r/2 proper ones. Note that t f2~ = ~ .  Hence, if we assign a chiral ligand 
(C) to f2~, the r/2 blocks of F can be assigned to C and the remaining r/2 ones to the 
antipode (C#). On the other hand, if we assign an achiral ligand to ~1' all of the r blocks 
in F can be assigned to achiral ligands. Therefore, G(/G:) acts on the domain that takes 

J , , . 

achiral ligands as well as chiral ones. The mode of substitution with chiral ligands is 
illustrated in the text. 

Appendix G 

Proof of A c being homomorphic to G. Let us consider a mapping ~g:fE ---> f't" 
i.e. / ~ :Q  f e-1 __+f o r f  --+ O-if  P. Suppose that bothf.andf~(fo e f t )  are mappea 
. ~ g g~Y g "Y Y . - - g  Y g r ~ ! 
t~y a,g to flae same function, 1.e. 

Q~lfr(P(6)) = QglfE(P(fi)) for V 5 e A. 

This indicates t ha t f  (P (6)) =fE(P (6)). In other words, f.  =fe,  which is contrary to the 
presumption. Hence, ttiis mapping ~g is a permutation on r :  
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Xg ~. f l  . . . .  , flFI ) 

_ _ ( J 1  .... , f'~' / 
l f l  Pg , . - . ,  Q~-lfttl Pg 

(G.1) 

Equation (G.1) indicates that g ~ G corresponds to the permutation ~g. Let A G be the 
set that contains ~g for Vg e G. For any g'  ~ G, 

\ 

Q4,frP~, ...) 
= (::: (Qe'Qg)fr(Pg 'Pg )-' ...')=) 

;~g,g . 
fr 

..) 

This indicates that the group A G is homomorphic to G. In other words, A G is a permu- 
tation representation of G. 

Appendix H 
Proofo f lemma 1, S i n c e f r - r e '  the definition (eq. 05))  shows that there is an 

appropriate g (~ G) which satisfies 

Qgfr(5) = fE(P(5)) for V 5 e k. 

Hence, we find 

(H. 1) 

On the other hand, 
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W(Q~L) 

= wic~(Qgfe(~)) I-I wia(Q_gfe(~)) l-I wic~(Q_gfe(3)) 

= i= fil a=0LSeI-II ~A ~/~,, '~ Wic~(fe(~))6~I-I~k~b~ Wia(fe(~))6~l--IAkO~' Wi,~(fc(~))], (H.2) 

f I ° since a set o Q~fe~(6)s is the same as that of fE(•)'s except for the sequence. A 
comparison between the right-hand sides of eqs. (H.1) and (H.2) reveals that W(Qgfr) 
= W(Qefc), since a set of P (6)'s and one of 6's are the same except for their sequences. 
This equation indicates t~at W(Qgfc)= W~e ). Similarly, W(Qgfr). Therefore, W(f  r) 
= w(fe  ). 

Appendix I 

Proof of A(f, ) being homomorphic to G. Let F (°) be a set of functions ( f :  A --> X), 
all of which have the same weight Wo(f): 

F(O)= {f}o), f(2o) ..... f~o) ..... fE(o) ..... f~o)}, ( I . l )  

where ~ = IF(°)l. We can obtain a permutation, 

f(o~ 
,..., Qf¢°~e;I 
, . . . ,  f ¢ O )  

=( f(o  , . . ,  i o, 

,..., Qfd°~e~ - ' )  
, . . . ,  f ~ ,  (o) 

,..., f(o) 1 
,..., Q_~f~o)~. (I.2) 

Let the symbol A~ ) denote the set of X(0) for V g ~ G. The next issue is to prove that 
~ )  is a permutation representation ofgG. 
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= , , . . ,  

- - C " '  Qg-'fr(°)(Pg (5)) ' i i i )  
, Q,- ' Qg;~ fr(°) (Pg, Pg (5) ) , 

, Qg~f(°)(Pg,g(5))  , ' 

(5)) ,...) 
Qg;' f(°)(Pg, Pg (5)) , . .  

since P,g Pg = P,gg and Qg, Qg = Qg,g. Hence, 

= , ) , 
(I.3) 

This equation indicates that the mapping of G (or P(~) onto A((°) is homomorphic. In other 
words, the group A; °) is a permutation representation of G. 

A p p e n d i x  J 

Proof  of  lemma 2. In order to find marks Poi' we consider a series of PojS in 
column j of (poi) of eq. (29). These elements are the numbers of fixed configuraUons 
of symmetry G.. Figure 2 holds for this case. Hence, the above discussion on eq. (7) 

J . . . . . . . . .  

i " (J) ('J) ~) ('J) (J) ('J) d t emerge during this ndlcates that Za~ fl~ or Zbk /3~ or Z]~ /32 orbits of length 
operation. For the purpose of constructing a fixed configuration, each of the G.-achiral 

J 
orbits of length d,~ has the same achiral ligands. Hence, the corresponding generating 
function is found";as follows: 

IXI 

adj a) Z Wia(X(ra)) d# , ( J . l )  
k ~ -  

r = l  

where X (a) denotes an achiral ligand. For each of the G-neutral sub-orbits, all types of r j 
ligands are available. Hence, 

IXI IXI IXI IXI 

bdi a ) k = Z Wia(Xr)  dj' = Z wict(x(a)) d)/ + Z wia(x(c)) ¢'  + Z wia /x (c# ) )  djk, 
r = l  r = l  r = l  r = l  

(J.2) 

where X denotes any type of ligands. 
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Each of the G-chiral orbits finds the same situation as eq. (21) and hence yields J 
the following generating function: 

IXI IXI 

C dj °t ) k -'- £ W i a ( x ( a ) ) d J *  + 2 ~ rw. r X ( C ) w .  ¢ X  ( c # h W i k / 2  
t t C ~ \  r t C C \  r ] J  

r= 1 r= 1 
(J.3) 

where X (~) and Xre#) denote a pair of chiral ligands. Since these equations are true for 
all orbits of Aia, the product over all sub-orbits of Aia (i.e. over all subgroups H2 i)) 
yields a generating function: 

uj Fl 9*~k~k F '~' 9xbk~t 

H I Wi~x ( x / a ) ) d J '  Wict (Xr )dJ*  
k = l L r = l  J L r = l  

~(i) a(i.,) 

r'£ r'7 X Wia(x(a))dJ'+ 2 E wia(X}C))wia(X(rC#)) 
Lr=  1 r= 1 

(J.4) 

Equation (J.4) is altematively obtained by the introduction of eqs. (J.1) to (J.3) into 
eq. (9). Since eq. (J.4) is true for all orbits of A, the product over all a and i provides 
a generating function that contains monomials of total powers of d k~} a), d ~(b) and 

, ~ k i j  

d.kfl~(¢). Thus, these monomials are in accord with the definition of weights (~eq. (14)); 
fl~erefore, the resulting polynomial is a generating function for enumeration of the marks 
Po/Examination of the concrete form of the generating function shows that it is equal 
to the equation which is derived by the introduction of eqs. (J.1) to (J.3) into eq. (30). 

Appendix K 

A special case with achiral ligancL~ only and with consideration of OMVs [12]. 
Suppose that ~jis the number of sub-orbits concerned with G(/Gi) $ G.. Then, eqs. (10), 
(11), and (12) yield the following result: J 

# , j  = + #}9 
v~ 

- Z ¢~(J) _t_ ~,(J). ~,(Jh I~(ij) Z fl(ij) (K. 1) 
- -  k/oak - -  A, bk  - -  /vck  ] l - ' k  = 

k = l  k = l  

If we assume IX.(a)l = IX.C°)I : IX.(C)l = IX. I in corollary 3-1 (eq. (22) or (23)), we can 
t0~ t a  tof  t0~ 

obtain an equation for the special case. 
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C O R O L L A R Y 3 - 3  

s oil 

I ]  l -I  IX;~l/3`j = ~ , B i m i j .  (K.2) 
i = 1  ~ = 0  

Under the conditions of this section, we can suppose that 

adi, = baj, = cd~, = saj,. 

Hence, eq. (30) converts definition 3 into: 

D E F I N I T I O N  5 

A subduced cycle index (SCI) with permission for only achiral ligands under 
consideration of OMVs is defined as 

a; v~ ¢~(a)~/3(k°~ (K.3) Z" (Gj"  ~(a)~= I-I I-I I-I j =  1,2, ,s. , " d #  : V'd:k : , " ' "  

i=I a=O k=1 

Note that eq. (K.3) contains the following unit subduced cycle index (USCI): 

vj 

~(a)~_ 1~ :"(a)~B~°~ (K.4) Z"(G ( / ~ ; )  ,1, Gj ~ j ~ , -  , . . . ,  ; ~o4"kJ , j = l  2, S, 
k = l  

which corresponds to eq. (9) (definition 1). 
Since we permit achiral ligands only, lemma 2 can be converted into lemma 4 by 

using the SCI of definition 5. 

L E M M A  4 

where 

~,Poj  Wo = Z" (Gj"  s (cOa djk 1' 
0 

IXI 

S(a) ~ " "4"k djk = Wi c~ (X~r) • 
r = l  

(K.5) 

( K . 6 )  

This lemma gives a set of Poj' which in turn yields Boi in terms of theorem 4. 
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Appendix L 

A special case with achiral ligands only and without consideration of OMVs [12]. 
In this case, the term flq is also given by eq. (K.1). If we assume IS(a)l = IXI, we can 
convert corollary 3-2 into corollary 3-5 for this case. 

COROLLARY 3-5 

$ 

Ixl  z'`='='~'+ = 2~ Bimij, j =  1 ,2 , . . . , s .  (L.1) 
i=1 

Suppose that q~J) is the number of sub-orbits concerned in G(IH~J)). This term 
is represented by eqs. (40), (41), and (42) to be 

S 

q~J) ,.,(J) _t_ ,.,(J) + q(J) Z "" ~ ~(J)+ ,v(J) ~ ,,,(J), c~/J) fl~ij) 
t~ikgbak ,,¢bk -- tgck ) I l k  = Z O~i -'~ "lak - - t t b k  ck = 

i=1 i=1 
(L.2) 

Under the conditions of this section, we can suppose that 

se ;~  = a . ; ,  = b,~, = %,. (L.3) 

Equations (L.2) and (L.3) convert definition 4 into: 

Z"'(Gj ;sd;,)= H (sa~,) ~ ,  for j =  1 ,2 , . . . , s ,  (L.4) 
k = l  

where qk u) is given by eq. (L.3). 
Since we permit achiral ligands only, we can obtain the following lemma by 

using the SCI defined in definition 6. 

LEMMA 5 

When only achiral ligands are permitted and no OMVs are considered, a gener- 
ating function for marks (pot) is represented by 

where 

Zpoj  Wo = z ' ( a j  ; s~, ), 
0 

for j = 1,2 . . . . .  s, (L. 5) 

IXI 

sa~k = Z Xff ~*. (L.6) 
r= 1 
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A matrix of p.. obtained by lemma 5 was introduced into theorem 4 (eq. (28) or (29)). 
Then the num"~r (Ba) of isomers of symmetry G can be obtained. 
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